In vivo physiological cross-sectional area and specific force are reduced in the gastrocnemius of elderly men

2005 ◽  
Vol 99 (3) ◽  
pp. 1050-1055 ◽  
Author(s):  
Christopher I. Morse ◽  
Jeanette M. Thom ◽  
Neil D. Reeves ◽  
Karen M. Birch ◽  
Marco V. Narici

Sarcopenia and muscle weakness are well-known consequences of aging. The aim of the present study was to ascertain whether a decrease in fascicle force (Ff) could be accounted for entirely by muscle atrophy. In vivo physiological cross-sectional area (PCSA) and specific force (Ff/PCSA) of the lateral head of the gastrocnemius (GL) muscle were assessed in a group of elderly men [EM, aged 73.8 yr (SD 3.5), height 173.4 cm (SD 4.4), weight 78.4 kg (SD 8.3); means (SD)] and for comparison in a group of young men [YM, aged 25.3 yr (SD 4.4), height 176.4 cm (SD 7.7), weight 79.1 kg (SD 11.9)]. GL muscle volume (Vol) and Achilles tendon moment arm length were evaluated using magnetic resonance imaging. Pennation angle and fiber fascicle length (Lf) were measured using B-mode ultrasonography during isometric maximum voluntary contraction of the plantar flexors. PCSA was estimated as Vol/Lf. GL Ff was calculated by dividing Achilles tendon force by the cosine of θ, during the interpolation of a supramaximal doublet, and accounting for antagonist activation level (assessed using EMG), Achilles tendon moment arm length, and the relative PCSA of the GL within the plantar flexor group. Voluntary activation of the plantar flexors was lower in the EM than in the YM (86 vs. 98%, respectively, P < 0.05). Compared with the YM, plantar flexor maximal voluntary contraction torque and Ff of the EM were lower by 47 and 40%, respectively ( P < 0.01). Both Vol and PCSA were smaller in the EM by 28% ( P < 0.01) and 16% ( P < 0.05), respectively. Also, pennation angle was 12% smaller in the EM, whereas there was no significant difference in Lf between the YM and EM. After accounting for differences in agonists and antagonists activation, the Ff/PCSA of the EM was 30% lower than that of the YM ( P < 0.01). These findings demonstrate that the loss of muscle strength with aging may be explained not only by a reduction in voluntary drive to the muscle, but mostly by a decrease in intrinsic muscle force. This phenomenon may possibly be due to a reduction in single-fiber specific tension.

2011 ◽  
Vol 110 (6) ◽  
pp. 1615-1621 ◽  
Author(s):  
Soichiro Iwanuma ◽  
Ryota Akagi ◽  
Toshiyuki Kurihara ◽  
Shigeki Ikegawa ◽  
Hiroaki Kanehisa ◽  
...  

The present study determined in vivo deformation of the entire Achilles tendon in the longitudinal and transverse directions during isometric plantar flexions. Twelve young women and men performed isometric plantar flexions at 0% (rest), 30%, and 60% of the maximal voluntary contraction (MVC) while a series of oblique longitudinal and cross-sectional magnetic resonance (MR) images of the Achilles tendon were taken. At the distal end of the soleus muscle belly, the Achilles tendon was divided into the aponeurotic (ATapo) and the tendinous (ATten) components. The length of each component was measured in the MR images. The widths of the Achilles tendon were determined at 10 regions along ATapo and at four regions along ATten. Longitudinal and transverse strains were calculated as changes in relative length and width compared with those at rest. The ATapo deformed in both longitudinal and transverse directions at 30%MVC and 60%MVC. There was no difference between the strains of the ATapo at 30%MVC and 60%MVC either in the longitudinal (1.1 and 1.6%) or transverse (5.0∼11.4 and 5.0∼13.9%) direction. The ATten was elongated longitudinally (3.3%) to a greater amount than ATapo, while narrowing transversely in the most distal region (−4.6%). The current results show that the magnitude and the direction of contraction-induced deformation of Achilles tendon are different for the proximal and distal components. This may be related to the different functions of Achilles tendon, i.e., force transmission or elastic energy storage during muscle contractions.


2008 ◽  
Vol 104 (2) ◽  
pp. 469-474 ◽  
Author(s):  
Christopher I. Morse ◽  
Keith Tolfrey ◽  
Jeanette M. Thom ◽  
Vasilios Vassilopoulos ◽  
Constantinos N. Maganaris ◽  
...  

The aim of this study was to assess whether the in vivo specific force and architectural characteristics of the lateral gastrocnemius (GL) muscle of early pubescent boys ( n = 11, age = 10.9 ± 0.3 yr, Tanner stage 2) differed from those of adult men ( n = 12, age = 25.3 ± 4.4 yr). Plantarflexor torque was 55% lower in the boys (77.4 ± 21.4 N·m) compared with the adults (175.6 ± 31.7 N·m, P < 0.01). Physiological cross-sectional area (PCSA), determined in vivo using ultrasonography and MRI, was 52% smaller in the boys ( P < 0.01). No difference was found in pennation angle, or in the ratio of fascicle length ( Lf) to muscle length between the boys and men. Moment arm length was 25% smaller in the boys ( P < 0.01). Antagonist coactivation, assessed using surface EMG on the dorsiflexors, was not different between the boys and men (11.8 ± 6.7% and 13.5 ± 5.8%, respectively). Surprisingly, GL force normalized to PCSA (specific force) was significantly higher (21%) in the boys than in the men (13.1 ± 2.0 vs. 15.9 ± 2.7 N/cm2, P < 0.05). This finding could not be explained by differences in moment arm length, muscle activation, or architecture, and other factors, such as tendinous characteristics and/or changes in moment arm length with contraction, may be held responsible. These observations warrant further investigation.


2018 ◽  
Vol 124 (3) ◽  
pp. 696-703 ◽  
Author(s):  
David T. Sims ◽  
Gladys L. Onambélé-Pearson ◽  
Adrian Burden ◽  
Carl Payton ◽  
Christopher I. Morse

Achondroplasia is a clinical condition defined by shorter stature and disproportionate limb length. Force production in able-bodied individuals (controls) is proportional to muscle size, but given the disproportionate nature of achondroplasia, normalizing to anatomical cross-sectional area (ACSA) is inappropriate. The aim of this study was to assess specific force of the vastus lateralis (VL) in 10 adults with achondroplasia (22 ± 3 yr) and 18 sex-matched controls (22 ± 2 yr). Isometric torque (iMVCτ) of the dominant knee extensors (KE) and in vivo measures of VL muscle architecture, volume, activation, and patella tendon moment arm were used to calculate VL physiological CSA (PCSA), fascicle force, and specific force in both groups. Achondroplasic muscle volume was 53% smaller than controls (284 ± 36 vs. 604 ± 102 cm3, P < 0.001). KE iMVCτ was 63% lower in achondroplasia compared with controls (95 ± 24 vs. 256 ± 47 N⋅m, P < 0.001). Activation and moment arm length were similar between groups ( P > 0.05), but coactivation of bicep femoris of achondroplasic subjects was 70% more than controls (43 ± 20 vs. 13 ± 5%, P < 0.001). Achondroplasic subjects had 58% less PCSA (43 ± 10 vs. 74.7 ± 14 cm2, P < 0.001), 29% lower fascicle force (702 ± 235 vs. 1704 ± 303 N, P < 0.001), and 29% lower specific force than control subjects (17 ± 6 vs. 24 ± 6 N⋅cm−2, P = 0.012). The smaller VL specific force in achondroplasia may be attributed to infiltration of fat and connective tissue, rather than to any difference in myofilament function. NEW & NOTEWORTHY The novel observation of this study was the measurement of normalized force production in a group of individuals with disproportionate limb length-to-torso ratios.


2021 ◽  
Vol 12 ◽  
Author(s):  
Rowan R. Smart ◽  
Brian O'Connor ◽  
Jennifer M. Jakobi

Force produced by the muscle during contraction is applied to the tendon and distributed through the cross-sectional area (CSA) of the tendon. This ratio of force to the tendon CSA is quantified as the tendon mechanical property of stress. Stress is traditionally calculated using the resting tendon CSA; however, this does not take into account the reductions in the CSA resulting from tendon elongation during the contraction. It is unknown if calculating the tendon stress using instantaneous CSA during a contraction significantly increases the values of in vivo distal biceps brachii (BB) tendon stress in humans compared to stress calculated with the resting CSA. Nine young (22 ± 1 years) and nine old (76 ± 4 years) males, and eight young females (21 ± 1 years) performed submaximal isometric elbow flexion tracking tasks at force levels ranging from 2.5 to 80% maximal voluntary contraction (MVC). The distal BB tendon CSA was recorded on ultrasound at rest and during the submaximal tracking tasks (instantaneous). Tendon stress was calculated as the ratio of tendon force during contraction to CSA using the resting and instantaneous measures of CSA, and statistically evaluated with multi-level modeling (MLM) and Johnson–Neyman regions of significance tests to determine the specific force levels above which the differences between calculation methods and groups became statistically significant. The tendon CSA was greatest at rest and decreased as the force level increased (p &lt; 0.001), and was largest in young males (23.0 ± 2.90 mm2) followed by old males (20.87 ± 2.0 mm2) and young females (17.08 ± 1.54 mm2) (p &lt; 0.001) at rest and across the submaximal force levels. Tendon stress was greater in the instantaneous compared with the resting CSA condition, and young males had the greatest difference in the values of tendon stress between the two conditions (20 ± 4%), followed by old males (19 ± 5%), and young females (17 ± 5%). The specific force at which the difference between the instantaneous and resting CSA stress values became statistically significant was 2.6, 6.6, and 10% MVC for old males, young females, and young males, respectively. The influence of using the instantaneous compared to resting CSA for tendon stress is sex-specific in young adults, and age-specific in the context of males. The instantaneous CSA should be used to provide a more accurate measure of in vivo tendon stress in humans.


2003 ◽  
Vol 95 (2) ◽  
pp. 829-837 ◽  
Author(s):  
Taija Finni ◽  
John A. Hodgson ◽  
Alex M. Lai ◽  
V. Reggie Edgerton ◽  
Shantanu Sinha

The distribution of strain along the soleus aponeurosis tendon was examined during voluntary contractions in vivo. Eight subjects performed cyclic isometric contractions (20 and 40% of maximal voluntary contraction). Displacement and strain in the apparent Achilles tendon and in the aponeurosis were calculated from cine phase-contrast magnetic resonance images acquired with a field of view of 32 cm. The apparent Achilles tendon lengthened 2.8 and 4.7% in 20 and 40% maximal voluntary contraction, respectively. The midregion of the aponeurosis, below the gastrocnemius insertion, lengthened 1.2 and 2.2%, but the distal aponeurosis shortened 2.1 and 2.5%, respectively. There was considerable variation in the three-dimensional anatomy of the aponeurosis and muscle-tendon junction. We suggest that the nonuniformity in aponeurosis strain within an individual was due to the presence of active and passive motor units along the length of the muscle, causing variable force along the measurement site. Force transmission along intrasoleus connective tissue may also be a significant source of nonuniform strain in the aponeurosis.


Author(s):  
Xini Zhang ◽  
Liqin Deng ◽  
Songlin Xiao ◽  
Lu Li ◽  
Weijie Fu

Background: Patients with Achilles tendon (AT) injuries are often engaged in sedentary work because of decreasing tendon vascularisation. Furthermore, men are more likely to be exposed to AT tendinosis or ruptures. These conditions are related to the morphological and mechanical properties of AT, but the mechanism remains unclear. This study aimed to investigate the effects of sex on the morphological and mechanical properties of the AT in inactive individuals. Methods: In total, 30 inactive healthy participants (15 male participants and 15 female participants) were recruited. The AT morphological properties (cross-sectional area, thickness, and length) were captured by using an ultrasound device. The AT force–elongation characteristics were determined during isometric plantarflexion with the ultrasonic videos. The AT stiffness was determined at 50%–100% maximum voluntary contraction force. The AT strain, stress, and hysteresis were calculated. Results: Male participants had 15% longer AT length, 31% larger AT cross-sectional area and 21% thicker AT than female participants (p < 0.05). The plantarflexion torque, peak AT force, peak AT stress, and AT stiffness were significantly greater in male participants than in female participants (p < 0.05). However, no significant sex-specific differences were observed in peak AT strain and hysteresis (p > 0.05). Conclusions: In physically inactive adults, the morphological properties of AT were superior in men but were exposed to higher stress conditions. Moreover, no significant sex-specific differences were observed in peak AT strain and hysteresis, indicating that the AT of males did not store and return elastic energy more efficiently than that of females. Thus, the mechanical properties of the AT should be maintained and/or improved through physical exercise.


2020 ◽  
Vol 120 (12) ◽  
pp. 2715-2727
Author(s):  
Nikolaos Pentidis ◽  
Falk Mersmann ◽  
Sebastian Bohm ◽  
Erasmia Giannakou ◽  
Nickos Aggelousis ◽  
...  

Abstract Purpose Evidence on training-induced muscle hypertrophy during preadolescence is limited and inconsistent. Possible associations of muscle strength and tendon stiffness with jumping performance are also not investigated. We investigated the thickness and pennation angle of the gastrocnemius medialis muscle (GM), as indicators for potential muscle hypertrophy in preadolescent athletes. Further, we examined the association of triceps surae muscle–tendon properties with jumping performance. Methods Eleven untrained children (9 years) and 21 similar-aged artistic gymnastic athletes participated in the study. Muscle thickness and pennation angle of the GM were measured at rest and muscle strength of the plantar flexors and Achilles tendon stiffness during maximum isometric contractions. Jumping height in squat (SJ) and countermovement jumps (CMJ) was examined using a force plate. We evaluated the influence of normalised muscle strength and tendon stiffness on jumping performance with a linear regression model. Results Muscle thickness and pennation angle did not differ significantly between athletes and non-athletes. In athletes, muscle strength was greater by 25% and jumping heights by 36% (SJ) and 43% (CMJ), but Achilles tendon stiffness did not differ between the two groups. The significant predictor for both jump heights was tendon stiffness in athletes and normalised muscle strength for the CMJ height in non-athletes. Conclusion Long-term artistic gymnastics training during preadolescence seems to be associated with increased muscle strength and jumping performance but not with training-induced muscle hypertrophy or altered tendon stiffness in the plantar flexors. Athletes benefit more from tendon stiffness and non-athletes more from muscle strength for increased jumping performance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Emily M. Keuler ◽  
Isaac F. Loegering ◽  
Jack A. Martin ◽  
Joshua D. Roth ◽  
Darryl G. Thelen

Abstract The evaluation of in vivo muscle-tendon loads is fundamental to understanding the actuation of normal and pathological human walking. However, conventional techniques for measuring muscle-tendon loads in the human body are too invasive for use in gait analysis. Here, we demonstrate the use of noninvasive measures of shear wave propagation as a proxy for Achilles tendon loading during walking. Twelve healthy young adults performed isometric ankle plantarflexion on a dynamometer. Achilles tendon wave speed, tendon moment arms, tendon cross-sectional area and ankle torque were measured. We first showed that the linear relationship between tendon stress and wave speed squared can be calibrated from isometric tasks. There was no significant effect of knee angle, ankle angle or loading rate on the subject-specific calibrations. Calibrated shear wave tensiometers were used to estimate Achilles tendon loading when walking at speeds ranging from 1 to 2 m/s. Peak tendon stresses during pushoff increased from 41 to 48 MPa as walking speed was increased, and were comparable to estimates from inverse dynamics. The tensiometers also detected Achilles tendon loading of 4 to 7 MPa in late swing. Late swing tendon loading was not discernible in the inverse dynamics estimates, but did coincide with passive stretch of the gastrocnemius muscle-tendon units. This study demonstrates the capacity to use calibrated shear wave tensiometers to evaluate tendon loading in locomotor tasks. Such technology could prove beneficial for identifying the muscle actions that underlie subject-specific movement patterns.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0001
Author(s):  
Heather Gotha ◽  
Jennifer Zellers ◽  
Karin Silbernagel

Category: Ankle, Sports Introduction/Purpose: Tendon elongation is associated with poor functional outcome in individuals after Achilles tendon rupture. While imaging modalities are reliable to measure Achilles tendon length, alternative time- and cost-effective measures are of interest. The resting angle of the ankle in prone both with knee extended1 and knee flexed2 have been used in the literature as surrogates for measuring Achilles elongation, however, their relationship to tendon length is not well-established. The purpose of this study is to validate the ankle resting angle as a measure of tendon elongation and examine the relationship of ankle resting angle to tendon elongation and calf strength. Methods: Individuals following unilateral Achilles tendon rupture, treated surgically, were included in this cross-sectional study. Individuals were excluded if they had deep wound infection or lumbar radiculopathy affecting the ankle plantar flexors. Ankle resting angle with knee extended and knee flexed to 90 degrees was measured using a digital inclinometer positioned on the lateral, plantar surface of the foot. Relative resting angle was calculated by subtracting the uninjured from the injured side. Tendon length to gastrocnemius was measured using B mode, extended field of view ultrasound imaging3 (tendon elongation = ruptured- uninjured). Calf strength was measured using the heel-rise test4. Limb symmetry indexes (LSI) were calculated (ruptured/uninjured sidex100) for total work performed on the heel-rise test. Results: Twenty-five individuals, a mean(SD) age of 44.2(13.6) years and mean(SD) of 22.5(39.1) months post-rupture, were included in this study. Mean(SD) relative resting angle with knee flexed was -5.4(6.4)° and mean (SD) relative resting angle with knee extended was -6.7(8.8)°. Mean(SD) tendon elongation was 1.56(1.20)cm. Mean(SD) heel-rise test work LSI was 45.8(23.8)%. Ankle resting angle with knee flexed related to elongation (r = -0.452, p = 0.027) and heel-rise test work LSI (r = 0.591, p=0.006). Ankle resting angle with knee extended related to elongation (r=-0.528, p=0.008) (Figure 1) but not heel-rise test work LSI. Conclusion: The results of this study suggest that ankle resting angle with knee extended and flexed are related to tendon elongation, however, calf strength also has a relationship to resting angle with knee flexed. This suggests that the ability of the calf to put passive tension on the foot is also a component of resting angle. The relationship between tendon elongation and resting angle with knee flexed may have been limited by methodological concerns, as tendon length was measured with the participant positioned with knees extended.


2006 ◽  
Vol 101 (1) ◽  
pp. 256-263 ◽  
Author(s):  
Brian C. Clark ◽  
Bo Fernhall ◽  
Lori L. Ploutz-Snyder

Strength loss following disuse may result from alterations in muscle and/or neurological properties. In this paper, we report our findings on human plantar flexor muscle properties following 4 wk of limb suspension (unilateral lower limb suspension), along with the effect of applied ischemia (Isc) on these properties. In the companion paper (Part II), we report our findings on the changes in neurological properties. Measurements of voluntary and evoked forces, the compound muscle fiber action potential (CMAP), and muscle cross-sectional area (CSA) were collected before and after 4 wk of unilateral lower limb suspension in adults ( n = 18; 19–28 yr). A subset of subjects ( n = 6) received applications of Isc 3 days/wk (3 sets; 5-min duration). In the subjects not receiving Isc, the loss in CSA and strength was as expected (∼9 and 14%). We observed a 30% slowing in the duration of the CMAP, a 10% decrease in evoked doublet force, a 12% increase in the twitch-to-doublet force ratio, and an altered postactivation potentiation response (11% increase in the postactivation potentiation-to-doublet ratio). We also detected a 10% slowing in the ability of the plantar flexor to develop force during the initial phase of an evoked contraction, along with a 6% reduction in in vivo specific doublet force. In the Isc subjects, no preservation was observed in strength or the evoked muscle properties. However, the Isc group did maintain CSA of the lateral gastrocnemius, as the control subjects’ lateral gastrocnemius atrophied 10.2%, whereas the subjects receiving Isc atrophied 4.7%. Additionally, Isc abolished the unweighting-induced slowing in the CMAP. These findings suggest that unweighting alters the contractile properties involved in the excitation-contraction coupling processes and that Isc impacts the sarcolemma.


Sign in / Sign up

Export Citation Format

Share Document