scholarly journals Warming and leaf litter functional diversity, not litter quality, drive decomposition in a freshwater ecosystem

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gustavo H. Migliorini ◽  
Gustavo Q. Romero

AbstractEnvironment, litter composition and decomposer community are known to be the main drivers of litter decomposition in aquatic ecosystems. However, it remains unclear whether litter quality or functional diversity prevails under warming conditions. Using tank bromeliad ecosystems, we evaluated the combined effects of warming, litter quality and litter functional diversity on the decomposition process. We also assessed the contribution of macroinvertebrates and microorganisms in explaining litter decomposition patterns using litter bags made with different mesh sizes. Our results showed that litter decomposition was driven by litter functional diversity and was increasingly higher under warming, in both mesh sizes. Decomposition was explained by increasing litter dissimilarities in C and N. Our results highlight the importance of considering different aspects of litter characteristics (e.g., quality and functional diversity) in order to predict the decomposition process in freshwater ecosystems. Considering the joint effect of warming and litter traits aspects allow a more refined understanding of the underlying mechanisms of climate change and biodiversity shifts effects on ecosystem functioning.

2016 ◽  
Vol 283 (1829) ◽  
pp. 20152664 ◽  
Author(s):  
Luz Boyero ◽  
Richard G. Pearson ◽  
Cang Hui ◽  
Mark O. Gessner ◽  
Javier Pérez ◽  
...  

Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder ( Alnus glutinosa ) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.


2008 ◽  
Vol 17 (4) ◽  
pp. 417-421 ◽  
Author(s):  
Aung Nanda ◽  
Takashi Asaeda ◽  
Takeshi Fujino ◽  
Kian Siong ◽  
Takashi Nakajima

2019 ◽  
Author(s):  
Chollet Simon ◽  
Maillard Morgane ◽  
Schörghuber Juliane ◽  
Grayston Sue ◽  
Martin Jean-Louis

ABSTRACTIn temperate forest ecosystems, the role of deer in litter decomposition, a key nutrient cycling process, remains debated. Deer may modify the decomposition process by affecting plant cover and thus modifying litter abundance. They can also alter litter quality through differential browsing and affect decomposer ability by changing soil abiotic properties and the nature of decomposer communities. We used two litterbag experiments in a quasi-experimental situation resulting from the introduction of Sitka black-tailed deer Odocoileus odocoileus sitkensis on forested islands of Haida Gwaii (Canada). We investigated the effects of deer on decomposition through their impacts on litter quality and on decomposer ability. After one year, the effect of deer on litter quality resulted in a lower rate of mass loss in litter from litterbags. This mass loss mainly reflected a 21 and 38 % lower rate of carbon (C) and nitrogen (N) loss, respectively. Presence of deer resulted in lower decomposer ability for the rate of carbon loss, but not for nitrogen loss. The level of C loss after one year was 5% higher for litter decomposing on an island without deer. But the change in the rate of carbon loss explained by the effect of deer on decomposer ability was outweighed by the effect deer had on litter quality. Additional effects of deer on the decomposition process through feces deposition were significant but minor. These results question the role the large increase in deer populations observed in temperate forests at continental scales may play in broad scale patterns of C and N cycling.


2014 ◽  
Vol 10 ◽  
pp. 113-121
Author(s):  
Mateusz Wilk ◽  
Julia Pawłowska ◽  
Marta Wrzosek ◽  
Michał Gorczak ◽  
Małgorzata Suska-Malawska

During a 35-month study on the decomposition of Sphagnum moss litter in poor fen and pine bog forest, an intensive colonization of litter-bags by mycorrhizal roots was observed during the decomposition process. Content of mycorrhizal roots in litter-bags, expressed as % mass of roots, was generally increasing during the decomposition in pine bog forest, and fluctuating during decomposition on poor fen, although in both cases the results were statistically insignificant. Two morphotypes of ericoid roots and two morphotypes of ectomycorrhizal roots were recorded from litter-bags on poor fen during the decomposition experiment, while in pine bog forest one morphotype of ericoid and nine morphotypes of ectomycorrhizal roots were recorded. Molecular identification of mycorrhizal roots succeeded only in the case of one ericoid and six putatively ectomycorrhizal morphotypes. Most morphotypes were recorded only once during the whole 35-month decomposition period, and only one ericoid and one ectomycorrhizal morphotypes were shared between the poor fen and pine bog forest communities.


2012 ◽  
Vol 28 (5) ◽  
pp. 437-443 ◽  
Author(s):  
Terrence P. McGlynn ◽  
Evan K. Poirson

Abstract:The decomposition of leaf litter is governed, in part, by litter invertebrates. In tropical rain forests, ants are dominant predators in the leaf litter and may alter litter decomposition through the action of a top-down control of food web structure. The role of ants in litter decomposition was investigated in a Costa Rican lowland rain forest with two experiments. In a mesocosm experiment, we manipulated ant presence in 50 ambient leaf-litter mesocosms. In a litterbag gradient experiment, Cecropia obtusifolia litter was used to measure decomposition rate constants across gradients in nutrients, ant density and richness, with 27 separate litterbag treatments for total arthropod exclusion or partial arthropod exclusion. After 2 mo, mass loss in mesocosms containing ants was 30.9%, significantly greater than the 23.5% mass loss in mesocosms without ants. In the litter bags with all arthropods excluded, decomposition was best accounted by the carbon: phosphorus content of soil (r2 = 0.41). In litter bags permitting smaller arthropods but excluding ants, decomposition was best explained by the local biomass of ants in the vicinity of the litter bags (r2 = 0.50). Once the microarthropod prey of ants are permitted to enter litterbags, the biomass of ants near the litterbags overtakes soil chemistry as the regulator of decomposition. In concert, these results support a working hypothesis that litter-dwelling ants are responsible for accelerating litter decomposition in lowland tropical rain forests.


Pedobiologia ◽  
2019 ◽  
Vol 75 ◽  
pp. 38-51 ◽  
Author(s):  
Eduardo Nascimento ◽  
Filipa Reis ◽  
Filipe Chichorro ◽  
Cristina Canhoto ◽  
Ana Lúcia Gonçalves ◽  
...  

2020 ◽  
Vol 3 (1) ◽  
pp. 25
Author(s):  
David Candel-Pérez ◽  
J. Bosco Imbert ◽  
Maitane Unzu ◽  
Juan A. Blanco

The promotion of mixed forests represents an adaptation strategy in forest management to cope with climate change. The mixing of tree species with complementary ecological traits may modify forest functioning regarding productivity, stability, or resilience against disturbances. Litter decomposition is an important process for global carbon and nutrient cycles in terrestrial ecosystems, also affecting the functionality and sustainability of forests. Decomposition of mixed-leaf litters has become an active research area because it mimics the natural state of leaf litters in most forests. Thus, it is important to understand the factors controlling decomposition rates and nutrient cycles in mixed stands. In this study, we conducted a litter decomposition experiment in a Scots pine and European beech mixed forest in the province of Navarre (north of Spain). The effects of forest management (i.e., different thinning intensities), leaf litter types, and tree canopy on mass loss and chemical composition in such decomposing litter were analysed over a period of three years. Higher decomposition rates were observed in leaf litter mixtures, suggesting the existence of positive synergies between both pine and beech litter types. Moreover, a decomposition process was favoured under mixed-tree canopy patches. Regarding thinning treatments significant differences on decomposition rates disappeared at the end of the study period. Time influenced the nutrient concentration after the leaf litter incubation, with significant differences in the chemical composition between the different types of leaf litter. Higher Ca and Mg concentrations were found in beech litter types than in pine ones. An increase in certain nutrients throughout the decomposition process was observed due to immobilization by microorganisms (e.g., Mg in all leaf litter types, K only in beech leaves, P in thinned plots and under mixed canopy). Evaluating the overall response in mixed-leaf litters and the contribution of single species is necessary for understanding the litter decomposition and nutrient processes in mixed-forest ecosystems.


Ecosystems ◽  
2017 ◽  
Vol 21 (3) ◽  
pp. 567-581 ◽  
Author(s):  
Alan Mosele Tonin ◽  
Luiz Ubiratan Hepp ◽  
José Francisco Gonçalves

2016 ◽  
Vol 135 (5) ◽  
pp. 849-856 ◽  
Author(s):  
Michiru Kasahara ◽  
Saori Fujii ◽  
Toko Tanikawa ◽  
Akira S. Mori

2013 ◽  
Vol 16 (8) ◽  
pp. 1045-1053 ◽  
Author(s):  
Pablo García-Palacios ◽  
Fernando T. Maestre ◽  
Jens Kattge ◽  
Diana H. Wall

Sign in / Sign up

Export Citation Format

Share Document