scholarly journals Deer slow down litter decomposition by reducing litter quality in a temperate forest

2019 ◽  
Author(s):  
Chollet Simon ◽  
Maillard Morgane ◽  
Schörghuber Juliane ◽  
Grayston Sue ◽  
Martin Jean-Louis

ABSTRACTIn temperate forest ecosystems, the role of deer in litter decomposition, a key nutrient cycling process, remains debated. Deer may modify the decomposition process by affecting plant cover and thus modifying litter abundance. They can also alter litter quality through differential browsing and affect decomposer ability by changing soil abiotic properties and the nature of decomposer communities. We used two litterbag experiments in a quasi-experimental situation resulting from the introduction of Sitka black-tailed deer Odocoileus odocoileus sitkensis on forested islands of Haida Gwaii (Canada). We investigated the effects of deer on decomposition through their impacts on litter quality and on decomposer ability. After one year, the effect of deer on litter quality resulted in a lower rate of mass loss in litter from litterbags. This mass loss mainly reflected a 21 and 38 % lower rate of carbon (C) and nitrogen (N) loss, respectively. Presence of deer resulted in lower decomposer ability for the rate of carbon loss, but not for nitrogen loss. The level of C loss after one year was 5% higher for litter decomposing on an island without deer. But the change in the rate of carbon loss explained by the effect of deer on decomposer ability was outweighed by the effect deer had on litter quality. Additional effects of deer on the decomposition process through feces deposition were significant but minor. These results question the role the large increase in deer populations observed in temperate forests at continental scales may play in broad scale patterns of C and N cycling.

2012 ◽  
Vol 518-523 ◽  
pp. 1913-1917
Author(s):  
Fang Qin Guo ◽  
Wei Chen

The effects of N deposition induced by environmental pollution on litter decomposition rate in Shenyang city are analyzed by the reciprocal transplant experiment. By contrasting environments and intraspecific variations in Cortex Phellodendri Chinensis leaf litter quality on mass loss rates to investigate the effects of N deposition on mass loss rates in urban and suburb. The results showed that N deposition in urban significantly affected litter decomposition rate by affecting litter quality and environmental conditions. There was a faster decomposition rate when the environmental conditions or litter quality was affected by N deposition.


Ecology ◽  
2020 ◽  
Author(s):  
Simon Chollet ◽  
Morgane Maillard ◽  
Juliane Schörghuber ◽  
Sue J. Grayston ◽  
Jean‐Louis Martin

2000 ◽  
Vol 78 (10) ◽  
pp. 1269-1287 ◽  
Author(s):  
Caroline M Preston ◽  
JA (Tony) Trofymow ◽  
the Canadian Intersite Decompositio Working Group

Predicting the effects of climate change on litter decomposition requires an improved understanding of the link between organic composition and the parameters used to define litter quality. Carbon-13 nuclear magnetic resonance spectroscopy with cross-polarization and magic-angle spinning (CPMAS NMR) was used to characterize 36 foliar litters, including the species used in the Canadian Intersite Decomposition Experiment (CIDET), a Canada-wide long-term litter decomposition study. The litters showed a wide range of organic composition, qualitatively interpreted as the sum of component biopolymers (mainly carbohydrates, cutin, tannins, and lignin). Only weak correlations were found between NMR parameters and Klason lignin (KLIG); however, cluster analysis based on elemental, NMR, and proximate analysis gave good separation of botanical classes. NMR also had little predictive value for 3-year CIDET mass losses, which were negatively correlated with both KLIG and KLIG/N. Mass loss generally decreased in the following order: grass > pioneer broad-leafed deciduous > conifer (deciduous and evergreen) > American beech (a fagaceae) > wood. Predictive models for 3-year CIDET mass loss derived from linear regression with elemental, proximate, and NMR analyses were superior to those using only NMR parameters, with the best model based on KLIG, N, and Ca. Although providing no molecular-level understanding, KLIG integrates the most insoluble lignin, cutin, and tannin components. Limitations and possible improvements for NMR evaluation of litter quality are discussed.Key words: Klason lignin, 13C CPMAS NMR, proximate analysis, litter decomposition, tannin, cutin, CIDET.


1994 ◽  
Vol 24 (3) ◽  
pp. 447-452 ◽  
Author(s):  
T.K. Lukumbuzya ◽  
J.W. Fyles ◽  
B. Côté

Application of base-cation fertilizers has been shown to increase tree growth and vigour in declining sugar maple (Acersaccharum Marsh.) stands in southern Quebec but little is known about the effects of such fertilizers on litter quality or decomposition. Sugar maple foliage litters from fertilized and unfertilized plots on a base-poor site and from a naturally base-rich site were incubated in litterbags of 1- and 3-mm mesh sizes on fertilized and unfertilized plots at the base-poor site. Mass loss of unfertilized litter was slower in fertilized than in unfertilized plots, suggesting a negative effect of fertilization on the decomposer community. Faster mass loss of fertilized than unfertilized litter incubated in the same plot indicated that changes in litter quality brought about by fertilization enhanced decomposition. Mass loss of fertilized litter on fertilized plots did not differ from that of unfertilized litter on control plots, indicating that although decomposition processes are affected by fertilization the overall effect on decomposition is negligible. Mass loss was significantly, but only slightly, higher in large mesh than in small mesh bags indicating that larger soil fauna play a limited role in litter decomposition in this forest.


PeerJ ◽  
2018 ◽  
Vol 6 ◽  
pp. e5095 ◽  
Author(s):  
Bruno Chávez-Vergara ◽  
Agustín Merino ◽  
Antonio González-Rodríguez ◽  
Ken Oyama ◽  
Felipe García-Oliva

Background Litter decomposition is a key process in the functioning of forest ecosystems, because it strongly controls nutrient recycling and soil fertility maintenance. The interaction between the litter chemical composition and the metabolism of the soil microbial community has been described as the main factor of the decomposition process based on three hypotheses: substrate-matrix interaction (SMI), functional breadth (FB) and home-field advantage (HFA). The objective of the present study was to evaluate the effect of leaf litter quality (as a direct plant effect, SMI hypothesis), the metabolic capacity of the microbial community (as a legacy effect, FB hypothesis), and the coupling between the litter quality and microbial activity (HFA hypothesis) on the litter decomposition of two contiguous deciduous oak species at a local scale. Methods To accomplish this objective, we performed a litterbag experiment in the field for 270 days to evaluate mass loss, leaf litter quality and microbial activity in a complete factorial design for litter quality and species site. Results The litter of Quercus deserticola had higher rate of decomposition independently of the site, while the site of Quercus castanea promoted a higher rate of decomposition independently of the litter quality, explained by the specialization of the soil microbial community in the use of recalcitrant organic compounds. The Home-Field Advantage Index was reduced with the decomposition date (22% and 4% for 30 and 270 days, respectively). Discussion We observed that the importance of the coupling of litter quality and microbial activity depends on decomposition stage. At the early decomposition stage, the home-advantage hypothesis explained the mass loss of litter; however, in the advanced decomposition stage, the litter quality and the metabolic capacity of the microbial community can be the key drivers.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Md. Hasanuzzaman ◽  
Mahmood Hossain

Mangifera indica,Zizyphus jujuba,Litchi chinensis, andArtocarpus heterophyllusare the most common cropland agroforest horticultural tree species of Bangladesh. This study focused on leaf litter decomposition and nutrient (N, P, and K) dynamics during the decomposition process. This experiment was conducted for 180 days by using litter bag technique during dry and wet seasons. Mass loss was the highest (49% and 57%) forA. heterophyllusand the lowest (25%) was found forL. chinensis. The highest initial rates (0.75% and 2.35%/day) of decomposition were observed forZ. jujubaand the lowest (0.50% and 0.79%/day) forL. chinensis. The highest decay constant was observed forA. heterophyllus(2.14 and 2.34) and the lowest (0.88 and 0.94) forL. chinensis. Leaf litter of all the studied species showed a similar pattern (K > N > P) of nutrient release during the decomposition process.Zizyphus jujubashowed comparatively higher return of N, P, and K than others. However, a significant (P<0.05) higher amount of mass loss, rate of decomposition, decay constant, and amount of nutrient return from leaf litter were observed during the wet season.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gustavo H. Migliorini ◽  
Gustavo Q. Romero

AbstractEnvironment, litter composition and decomposer community are known to be the main drivers of litter decomposition in aquatic ecosystems. However, it remains unclear whether litter quality or functional diversity prevails under warming conditions. Using tank bromeliad ecosystems, we evaluated the combined effects of warming, litter quality and litter functional diversity on the decomposition process. We also assessed the contribution of macroinvertebrates and microorganisms in explaining litter decomposition patterns using litter bags made with different mesh sizes. Our results showed that litter decomposition was driven by litter functional diversity and was increasingly higher under warming, in both mesh sizes. Decomposition was explained by increasing litter dissimilarities in C and N. Our results highlight the importance of considering different aspects of litter characteristics (e.g., quality and functional diversity) in order to predict the decomposition process in freshwater ecosystems. Considering the joint effect of warming and litter traits aspects allow a more refined understanding of the underlying mechanisms of climate change and biodiversity shifts effects on ecosystem functioning.


PeerJ ◽  
2022 ◽  
Vol 10 ◽  
pp. e12747
Author(s):  
Peng Zan ◽  
Zijun Mao ◽  
Tao Sun

Litter quality and climate have been presumed to be the dominant factors regulating litter decomposition rates on broad spatial scales. However, the role of soil fauna on litter decomposition is poorly understood, despite the fact that it could strongly influence decomposition by fragmentation and subsequent modification of the activities of microorganisms.In this study, we carried out a meta-analysis on the effects of soil fauna on litter decomposition rates in Chinese forests, ranging from boreal to tropical forests, based on data from 20 studies. The effects of climatic factors on decomposition rate were assessed by comparing the contribution of soil fauna to litter decomposition from studies carried out at different latitudes.The degree of influence of the soil fauna was in the order tropical (200%) > subtropical (47%) > temperate forest (28%). Comparing the effect size of soil fauna, it was found that when soil fauna was excluded, the decomposition rate, calculated using Olson’s equation, was most affected in tropical forest (−0.77), while the litter decomposition rate both subtropical (−0.36) and temperate forest (−0.19) were also suppressed to varying degrees (P < 0.001). These results highlight that soil fauna could promote litter decomposition to different extents. Using stepwise multiple linear regression, the effect size of the soil fauna was negatively correlated with the cellulose and nitrogen concentrations of the initial litter material. In Chinese forests, litter decomposition rates were reduced, on average, by 65% when soil fauna was excluded. The impact of soil fauna on decomposition was shown to be closely related to climate and litter quality.


2020 ◽  
Vol 100 (1) ◽  
pp. 11-25 ◽  
Author(s):  
Guoyong Yan ◽  
Xiongde Dong ◽  
Binbin Huang ◽  
Honglin Wang ◽  
Ziming Hong ◽  
...  

We conducted a field experiment with four levels of simulated nitrogen (N) deposition (0, 2.5, 5, and 7.5 g N m−2 yr−1, respectively) to investigate the response of litter decomposition of Pinus koraiensis (PK), Tilia amurensis (TA), and their mixture to N deposition during winter and growing seasons. Results showed that N addition significantly increased the mass loss of PK litter and significantly decreased the mass loss of TA litter throughout the 2 yr decomposition processes, which indicated that the different responses in the decomposition of different litters to N addition can be species specific, potentially attributed to different litter chemistry. The faster decomposition of PK litter with N addition occurred mainly in the winter, whereas the slower decomposition of TA litter with N addition occurred during the growing season. Moreover, N addition had a positive effect on the release of phosphorus, magnesium, and manganese for PK litter and had a negative effect on the release of carbon, iron, and lignin for TA litter. Decomposition and nutrient release from mixed litter with N addition showed a non-additive effect. The mass loss from litter in the first winter and over the entire study correlated positively with the initial concentration of cellulose, lignin, and certain nutrients in the litter, demonstrating the potential influence of different tissue chemistries.


Sign in / Sign up

Export Citation Format

Share Document