scholarly journals Biotic and abiotic variables influencing plant litter breakdown in streams: a global study

2016 ◽  
Vol 283 (1829) ◽  
pp. 20152664 ◽  
Author(s):  
Luz Boyero ◽  
Richard G. Pearson ◽  
Cang Hui ◽  
Mark O. Gessner ◽  
Javier Pérez ◽  
...  

Plant litter breakdown is a key ecological process in terrestrial and freshwater ecosystems. Streams and rivers, in particular, contribute substantially to global carbon fluxes. However, there is little information available on the relative roles of different drivers of plant litter breakdown in fresh waters, particularly at large scales. We present a global-scale study of litter breakdown in streams to compare the roles of biotic, climatic and other environmental factors on breakdown rates. We conducted an experiment in 24 streams encompassing latitudes from 47.8° N to 42.8° S, using litter mixtures of local species differing in quality and phylogenetic diversity (PD), and alder ( Alnus glutinosa ) to control for variation in litter traits. Our models revealed that breakdown of alder was driven by climate, with some influence of pH, whereas variation in breakdown of litter mixtures was explained mainly by litter quality and PD. Effects of litter quality and PD and stream pH were more positive at higher temperatures, indicating that different mechanisms may operate at different latitudes. These results reflect global variability caused by multiple factors, but unexplained variance points to the need for expanded global-scale comparisons.

2016 ◽  
Vol 67 (12) ◽  
pp. 1826 ◽  
Author(s):  
Libe Solagaistua ◽  
Maite Arroita ◽  
Ibon Aristi ◽  
Aitor Larrañaga ◽  
Arturo Elosegi

Discharge fluctuations modify water depth and velocity in streams and this can affect leaf litter breakdown, which is an important ecosystem function. Both during droughts, when parts of the surface dry out, and during floods, which scour the benthic surface, macroinvertebrates can seek refuge in the subsurface. Therefore, as an important part of them depend on organic matter, the effects of discharge fluctuations on leaf breakdown might be greater on the surface than in the subsurface of lotic ecosystems. To test this hypothesis, we measured microbial and total breakdown rates of alder (Alnus glutinosa (L.) Gaertner) both on the surface and in the subsurface in two areas of a stream, namely, the permanently wet channel and the parafluvial areas. Reduced discharge dried out only the surface of the parafluvial areas, and thus, breakdown rates were reduced only in this habitat. In contrast, breakdown rates were similar in both habitats of the permanently wet channel, but also in the subsurface of the parafluvial area. The subsurface can mitigate the effects of discharge alterations on the breakdown of organic matter in streams, which might be critical for the productivity of these ecosystems under increased drought frequencies.


Oikos ◽  
2012 ◽  
Vol 122 (7) ◽  
pp. 987-997 ◽  
Author(s):  
Marika Makkonen ◽  
Matty P. Berg ◽  
Richard S. P. van Logtestijn ◽  
Jurgen R. van Hal ◽  
Rien Aerts

Author(s):  
Renan S. Rezende ◽  
Patrícia R.S. Correia ◽  
José F. Gonçalves Jr ◽  
Anderson M. Santos

<p>The dynamics of coarse particulate organic matter (CPOM) drives the functioning of most low order freshwater ecosystems. We evaluated plant litter input, litterfall, leaf litter breakdown rates, and the aquatic invertebrate community over the course of one year in a stream situation in a transition zone between savannah and Atlantic forest. Total organic matter input (litter fall) was 335 g m<sup>-2</sup> yr<sup>-1</sup>, which was mainly composed of leaves (50%). Higher values are found in the transition from dry to rainy season (September and October), probably in response to water stress. The remaining leaf mass (65% on average) was lowest in May (49%) and highest in August (79%). CPOM productivity in this transition riparian zone is higher than in other savannah systems, but lower than in Atlantic forest. The higher leaf litter breakdown in May was likely accompanied by environmental enrichment due to increase in fruits and flowers (high energy resources). The coefficient of decomposition was classified as fast (k= -0.016) and showed a positive relationship with water flow (increase in physical abrasion). Collected invertebrates were classified as 6% shredders and 12% scrapers. The remaining leaf mass showed a negative relationship with scraper abundance, highlighting the importance of these trophic groups in tropical streams. We can conclude that climate factors (e.g., rainfall) directly affect the input and quality of CPOM and, consequently, leaf decomposition in savanna/Atlantic forest transition zones. </p>


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Gustavo H. Migliorini ◽  
Gustavo Q. Romero

AbstractEnvironment, litter composition and decomposer community are known to be the main drivers of litter decomposition in aquatic ecosystems. However, it remains unclear whether litter quality or functional diversity prevails under warming conditions. Using tank bromeliad ecosystems, we evaluated the combined effects of warming, litter quality and litter functional diversity on the decomposition process. We also assessed the contribution of macroinvertebrates and microorganisms in explaining litter decomposition patterns using litter bags made with different mesh sizes. Our results showed that litter decomposition was driven by litter functional diversity and was increasingly higher under warming, in both mesh sizes. Decomposition was explained by increasing litter dissimilarities in C and N. Our results highlight the importance of considering different aspects of litter characteristics (e.g., quality and functional diversity) in order to predict the decomposition process in freshwater ecosystems. Considering the joint effect of warming and litter traits aspects allow a more refined understanding of the underlying mechanisms of climate change and biodiversity shifts effects on ecosystem functioning.


Pedobiologia ◽  
2019 ◽  
Vol 75 ◽  
pp. 38-51 ◽  
Author(s):  
Eduardo Nascimento ◽  
Filipa Reis ◽  
Filipe Chichorro ◽  
Cristina Canhoto ◽  
Ana Lúcia Gonçalves ◽  
...  

2013 ◽  
Vol 10 (7) ◽  
pp. 5115-5124 ◽  
Author(s):  
J. Esperschütz ◽  
C. Zimmermann ◽  
A. Dümig ◽  
G. Welzl ◽  
F. Buegger ◽  
...  

Abstract. In initial ecosystems, concentrations of all macro- and micronutrients can be considered as extremely low. Plant litter therefore strongly influences the development of a degrader's food web and is an important source for C and N input into soil in such ecosystems. In the present study, a 13C litter decomposition field experiment was performed for 30 weeks in initial soils from a post-mining area near the city of Cottbus (Germany). Two of this region's dominant but contrasting pioneering plant species (Lotus corniculatus L. and Calamagrostis epigejos L.) were chosen to investigate the effects of litter quality on the litter decomposing microbial food web in initially nutrient-poor substrates. The results clearly indicate the importance of litter quality, as indicated by its N content, its bioavailability for the degradation process and the development of microbial communities in the detritusphere and soil. The degradation of the L. corniculatus litter, which had a low C / N ratio, was fast and showed pronounced changes in the microbial community structure 1–4 weeks after litter addition. The degradation of the C. epigejos litter material was slow and microbial community changes mainly occurred between 4 and 30 weeks after litter addition to the soil. However, for both litter materials a clear indication of the importance of fungi for the degradation process was observed both in terms of fungal abundance and activity (13C incorporation activity)


Oecologia ◽  
2004 ◽  
Vol 142 (3) ◽  
pp. 465-473 ◽  
Author(s):  
Hugh A. L. Henry ◽  
Elsa E. Cleland ◽  
Christopher B. Field ◽  
Peter M. Vitousek

1998 ◽  
Vol 6 (1) ◽  
pp. 1-12 ◽  
Author(s):  
M Francesca Cotrufo ◽  
Björn Berg ◽  
Werner Kratz

There is evidence that N concentration in hardwood leaf litter is reduced when plants are raised in an elevated CO2 atmosphere. Reductions in the N concentration of leaf litter have been found for tree species raised under elevated CO2, with reduction in N concentration ranging from ca. 50% for sweet chestnut (Castanea sativa) to 19% for sycamore (Acer platanoides). However, the effects of elevated CO2 on the chemical composition of litter has been investigated only for a limited number of species. There is also little information on the effects of increased CO2 on the quality of root tissues. If we consider, for example, two important European forest ecosystem types, the dominant species investigated for chemical changes are just a few. Thus, there are whole terrestrial ecosystems in which not a single species has been investigated, meaning that the observed effects of a raised CO2 level on plant litter actually has a large error source. Few reports present data on the effects of elevated CO2 on litter nutrients other than N, which limits our ability to predict the effects of elevated CO2 on litter quality and thus on its decomposability. In litter decomposition three separate steps are seen: (i) the initial stages, (ii) the later stages, and (iii) the final stages. The concept of "substrate quality," translated into chemical composition, will thus change between early stages of decomposition and later ones, with a balanced proportion of nutrients (e.g., N, P, S) being required in the early decomposition phase. In the later stages decomposition rates are ruled by lignin degradation and that process is regulated by the availability of certain nutrients (e.g., N, Mn), which act as signals to the lignin-degrading soil microflora. In the final stages the decomposition comes to a stop or may reach an extremely low decomposition rate, so low that asymptotic decomposition values may be estimated and negatively related to N concentrations. Studies on the effects of changes in chemical composition on the decomposability of litter have mainly been made during the early decomposition stages and they generally report decreased litter quality (e.g., increased C/N ratio), resulting in lower decomposition rates for litter raised under elevated CO2 as compared with control litter. No reports are found relating chemical changes induced by elevated CO2 to litter mass-loss rates in late stages. By most definitions, at these stages litter has turned into humus, and many studies demonstrated that a raising of the N level may suppress humus decomposition rate. It is thus reasonable to speculate that a decrease in N levels in humus would accelerate decomposition and allow it to proceed further. There are no experimental data on the long-term effect of elevated CO2 levels, and a decrease in the storage of humus and nutrients could be predicted, at least in temperate and boreal forest systems. Future works on the effects of elevated CO2 on litter quality need to include studies of a larger number of nutrients and chemical components, and to cover different stages of decomposition. Additionally, the response of plant litter quality to elevated CO2 needs to be investigated under field conditions and at the community level, where possible shifts in community composition (i.e., C3 versus C4 ; N2 fixers versus nonfixers) predicted under elevated CO2 are taken into account.Key words: climate change, substrate quality, carbon dioxide, plant litter, chemical composition, decomposition.


Sign in / Sign up

Export Citation Format

Share Document