scholarly journals Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Proença ◽  
Fabian Braun ◽  
Mathieu Lemay ◽  
Josep Solà ◽  
Andy Adler ◽  
...  

AbstractPulmonary hypertension is a hemodynamic disorder defined by an abnormal elevation of pulmonary artery pressure (PAP). Current options for measuring PAP are limited in clinical practice. The aim of this study was to evaluate if electrical impedance tomography (EIT), a radiation-free and non-invasive monitoring technique, can be used for the continuous, unsupervised and safe monitoring of PAP. In 30 healthy volunteers we induced gradual increases in systolic PAP (SPAP) by exposure to normobaric hypoxemia. At various stages of the protocol, the SPAP of the subjects was estimated by transthoracic echocardiography. In parallel, in the pulmonary vasculature, pulse wave velocity was estimated by EIT and calibrated to pressure units. Within-cohort agreement between both methods on SPAP estimation was assessed through Bland–Altman analysis and at subject level, with Pearson’s correlation coefficient. There was good agreement between the two methods (inter-method difference not significant (P > 0.05), bias ± standard deviation of − 0.1 ± 4.5 mmHg) independently of the degree of PAP, from baseline oxygen saturation levels to profound hypoxemia. At subject level, the median per-subject agreement was 0.7 ± 3.8 mmHg and Pearson’s correlation coefficient 0.87 (P < 0.05). Our results demonstrate the feasibility of accurately assessing changes in SPAP by EIT in healthy volunteers. If confirmed in a patient population, the non-invasive and unsupervised day-to-day monitoring of SPAP could facilitate the clinical management of patients with pulmonary hypertension.

2020 ◽  
Vol 9 ◽  
pp. 204800402097383
Author(s):  
Simon Wernhart ◽  
Jürgen Hedderich

Objective Right heart catheterization (RHC) is associated with a higher procedural risk in older adults, but non-invasive estimation of pulmonary hypertension (PH) is a challenge. We aimed to elaborate a non-invasive prediction model to estimate PH. Methods and design We retrospectively analysed 134 older adults (70.0 years ±12.3; 44.9% males) who reported to our clinic with unclear dyspnea between 01/2015 and 01/2020 and had received RHC as a part of their diagnostic workup. Lung function testing, analysis of blood gas samples, 6 min walk distance and echocardiography were performed within 24 hours of RHC. Main outcome measures In a stepwise statistical approach by using an in/exclusion algorithm (using the AIC criterion) we analysed non-invasive parameters to test their value in predicting PH (defined as mean pulmonary artery pressure, PAmean, >25mmHg). Discrimination capability of the final model was measured by the AUC (area under curve) from an ROC (receiver operating characteristics) analysis. Results We yielded a sensitivity of 87.2% and a specificity of 62.5% in a combinatorial logistical model with systolic pulmonary artery pressure (sPAP) and forced vital capacity (VCmax), the discrimination index was 86.7%. The odds ratios for an increase of 10 mmHg of sPAP were 2.99 (2.08–4.65) and 1.86 (1.11–3.21) for a 1 l decrease in VCmax. On their own, VCmax proved to be specific (83.3%), while sPAP was a sensitive (79.1%) predictor for PH. Conclusions We provide a combinatorial model to predict PH from sPAP and VCmax in older adults, which may help to avoid invasive procedures.


2019 ◽  
Author(s):  
Benjamin Fidock ◽  
Nithin Balasubramanian ◽  
Natasha Barker ◽  
Alistair W Macdonald ◽  
David Capener ◽  
...  

Biomedicines ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1212
Author(s):  
Fabian Mueller-Graf ◽  
Jonas Merz ◽  
Tim Bandorf ◽  
Chiara Albus ◽  
Maike Henkel ◽  
...  

For the non-invasive assessment of pulmonary artery pressure (PAP), surrogates like pulse wave transit time (PWTT) have been proposed. The aim of this study was to invasively validate for which kind of PAP (systolic, mean, or diastolic) PWTT is the best surrogate parameter. To assess both PWTT and PAP in six healthy pigs, two pulmonary artery Mikro-Tip™ catheters were inserted into the pulmonary vasculature at a fixed distance: one in the pulmonary artery trunk, and a second one in a distal segment of the pulmonary artery. PAP was raised using the thromboxane A2 analogue U46619 (TXA) and by hypoxic vasoconstriction. There was a negative linear correlation between PWTT and systolic PAP (r = 0.742), mean PAP (r = 0.712) and diastolic PAP (r = 0.609) under TXA. During hypoxic vasoconstriction, the correlation coefficients for systolic, mean, and diastolic PAP were consistently higher than for TXA-induced pulmonary hypertension (r = 0.809, 0.778 and 0.734, respectively). Estimation of sPAP, mPAP, and dPAP using PWTT is feasible, nevertheless slightly better correlation coefficients were detected for sPAP compared to dPAP. In this study we establish the physiological basis for future methods to obtain PAP by non-invasively measured PWTT.


2013 ◽  
Vol 114 (3) ◽  
pp. 154-161 ◽  
Author(s):  
Mehmet Demir ◽  
U. Uyan ◽  
S. Keçeoçlu ◽  
C. Demir

Vitamin D deficiency actives renin-angiotensin-aldosterone system (RAAS) which affects cardiovascular system. Activation of RAAS is associated with pulmonary hypertension (PHT). Relation between vitamin D deficiency and PHT could be therefore suggested. In  our study we compared pulmonary artery pressure between vitamin D deficiency and control groups. 115 consecutive patients (average age: 61.86 ± 5.86) who have detected very low vitamin D (vitamin D levels < 10 ng/ml) were enrolled. 117 age matched persons (average age: 61.74 ± 5.99) were selected as the control group. All groups underwent transthoracic echocardiography. Routine biochemical measurement of 25-OH vitamin D and parathormon (PTH) levels were performed. Baseline characteristics of the study groups were comparable. Systolic pulmonary artery pressure (SPAP) of patients in  the low vitamin D group was higher than the control groups. As a  result our study, a  relation between vitamin D deficiency and pulmonary artery hypertension was revealed.


2006 ◽  
Vol 20 (3) ◽  
pp. 331-339 ◽  
Author(s):  
Arnaud Robitaille ◽  
André Y. Denault ◽  
Pierre Couture ◽  
Sylvain Bélisle ◽  
Annik Fortier ◽  
...  

Author(s):  
George K Istaphanous ◽  
Andreas W Loepke

Pediatric pulmonary arterial hypertension (PAH) is characterized by a pathologically elevated pulmonary artery pressure in children. The etiology of PAH is multifactorial, and while its prognosis is closely related to the reversibility of the underlying disease process, much progress has recently been made in its diagnosis and treatment, significantly decreasing the associated morbidity and mortality.


Sign in / Sign up

Export Citation Format

Share Document