scholarly journals Increasing AFM colloidal probe accuracy by optical tweezers

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tomasz Witko ◽  
Zbigniew Baster ◽  
Zenon Rajfur ◽  
Kamila Sofińska ◽  
Jakub Barbasz

AbstractA precise determination of the cantilever spring constant is the critical point of all colloidal probe experiments. Existing methods are based on approximations considering only cantilever geometry and do not take into account properties of any object or substance attached to the cantilever. Neglecting the influence of the colloidal sphere on the cantilever characteristics introduces significant uncertainty in a spring constant determination and affects all further considerations. In this work we propose a new method of spring constant calibration for ‘colloidal probe’ type cantilevers based on the direct measurement of force constant. The Optical Tweezers based calibration method will help to increase the accuracy and repeatability of the AFM colloidal probe experiments.

2022 ◽  
Author(s):  
Qingze Li ◽  
Xiping Chen ◽  
Lei Xie ◽  
Tiexin Han ◽  
Jiacheng Sun ◽  
...  

Abstract Here, simultaneous in-situ calibration of pressures and temperatures was performed in a hinge-type second-stage cubic large volume press (LVP) up to 15 GPa and 1400 K by an acoustic travel-time approach. Based on the recently reported P-t S and P-T-t P -t S equations for Al2O3 buffer rod, the cell pressures and temperatures in the chamber of LVP were in-situ determined, in comparison with those by conventional off-line (or fixed-points) pressure calibration method and direct thermocouple measurement, respectively. It is found that the cell pressures of the LVP chamber are significantly reduced after annealing at simultaneous high pressures and high temperatures, owing to the stress relaxation as accumulate in the LVP chamber. This acoustic travel-time method is validated to be a good way for precise determination of thermal (cell) pressures at high temperature conditions, and is of great importance and necessity to conduct in-situ physical property measurements under extreme high P-T conditions, especially when the precious synchrotron X-ray/neutron diffraction beams are not available.


2010 ◽  
Vol 46 (4) ◽  
pp. 411-417 ◽  
Author(s):  
Yang MENG ◽  
Lin GU ◽  
Wenzheng ZHANG

1968 ◽  
Vol 12 ◽  
Author(s):  
R. Goossens

A precise method for the determination of the increment of the  basal area using the PressIer bore. Refering to  previous research showing that the basal area of the corsica pine could be  characterized by an ellips, we present in this paper a precise method for the  determination of the increment of the basal area. In this method we determine  the direction of the maximum diameter, we measure this diameter and we take a  core in one of the points of tangency of the caliper with the measured tree.  The determination of the diameter perpendicular to the maximum diameter  finishes the work wich is to be done in the forest. From the classical  measurements effectuated on the core and from the measured diameters we can  then determine the form (V) and the excentricity (e). Substituting these two  parameters in the formula 2 or 2', we can also calculate the error of a  radius measured on the core with respect to the representative radius, This  error with them allow us to correct the measured value of the minimum or the  maximum radius and we will be able to do a precise determination of the  increment.


Author(s):  
Ferrari Colin ◽  
Resongles Eléonore ◽  
Freydier Rémi ◽  
Casiot Corinne

Thiol-functionalized silica powder allowed single-step purification of antimony for exploring stable Sb isotope signatures in the environment.


Sign in / Sign up

Export Citation Format

Share Document