scholarly journals Fractional order stagnation point flow of the hybrid nanofluid towards a stretching sheet

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anwar Saeed ◽  
Muhammad Bilal ◽  
Taza Gul ◽  
Poom Kumam ◽  
Amir Khan ◽  
...  

AbstractFractional calculus characterizes a function at those points, where classical calculus failed. In the current study, we explored the fractional behavior of the stagnation point flow of hybrid nano liquid consisting of TiO2 and Ag nanoparticles across a stretching sheet. Silver Ag and Titanium dioxide TiO2 nanocomposites are one of the most significant and fascinating nanocomposites perform an important role in nanobiotechnology, especially in nanomedicine and for cancer cell therapy since these metal nanoparticles are thought to improve photocatalytic operation. The fluid movement over a stretching layer is subjected to electric and magnetic fields. The problem has been formulated in the form of the system of PDEs, which are reduced to the system of fractional-order ODEs by implementing the fractional similarity framework. The obtained fractional order differential equations are further solved via fractional code FDE-12 based on Caputo derivative. It has been perceived that the drifting velocity generated by the electric field E significantly improves the velocity and heat transition rate of blood. The fractional model is more generalized and applicable than the classical one.

2020 ◽  
Vol 1529 ◽  
pp. 042085
Author(s):  
Muhammad Khairul Anuar Mohamed ◽  
Huei Ruey Ong ◽  
Hamzah Taha Alkasasbeh ◽  
Mohd Zuki Salleh

2011 ◽  
Vol 66 (12) ◽  
pp. 705-711 ◽  
Author(s):  
Sin Wei Wong ◽  
Abu Omar Awang ◽  
Anuar Ishak

The steady two-dimensional stagnation-point flow of an incompressible viscous fluid over an exponentially shrinking/stretching sheet is studied. The shrinking/stretching velocity, the free stream velocity, and the surface temperature are assumed to vary in a power-law form with the distance from the stagnation point. The governing partial differential equations are transformed into a system of ordinary differential equations before being solved numerically by a finite difference scheme known as the Keller-box method. The features of the flow and heat transfer characteristics for different values of the governing parameters are analyzed and discussed. It is found that dual solutions exist for the shrinking case, while for the stretching case, the solution is unique.


2011 ◽  
Vol 52-54 ◽  
pp. 1895-1900
Author(s):  
Jing Zhu ◽  
Lian Cun Zheng ◽  
Xue Hui Chen

A similarity analysis is performed for a steady laminar boundary layer stagnation-point flow of an electrically conducting fluid in a porous medium subject to a transverse non-uniform magnetic field past a non-linear stretching sheet. A scaling group of transformations is applied to get the invariants. Using the invariants, a third order ordinary differential equation corresponding to the momentum is obtained. We show the existence and uniqueness of convex and concave solutions for the power law exponent, according to the values of magnetic parameter, permeability parameter and velocity ratio parameter.


Sign in / Sign up

Export Citation Format

Share Document