scholarly journals Foetal growth, birth transition, enteral nutrition and brain light scattering

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Osuke Iwata ◽  
Sachiko Iwata ◽  
Tsuyoshi Kurata ◽  
Kennosuke Tsuda ◽  
Koya Kawase ◽  
...  

AbstractIf the brain structure is assessed at neonatal intensive care units, covert clinical events related with subtle brain injury might be identified. The reduced scattering coefficient of near-infrared light (μS’) obtained using time-resolved near-infrared spectroscopy from the forehead of infants is associated with gestational age, body weight and Apgar scores, presumably reflecting subtle changes of the brain related to foetal growth and birth transition. One hundred twenty-eight preterm and term infants were studied to test whether μS’ obtained from the head at term-equivalent age is associated with foetal growth, birth transition and nutritional status after birth, which are key independent variables of developmental outcomes. As potential independent variables of μS’, birth weight, Apgar scores, age at full enteral feeding and post-conceptional age at the study were assessed to represent foetal growth, birth transition and nutritional status after birth. Subsequently, higher μS’ values were associated with higher Apgar scores (p = 0.003) and earlier establishment of enteral feeding (p < 0.001). The scattering property of near-infrared light within the neonatal brain might reflect changes associated with birth transition and nutritional status thereafter, which might be used as a non-invasive biomarker to identify covert independent variables of brain injury in preterm infants.

Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Joseph M Wider ◽  
Erin Gruley ◽  
Jennifer Mathieu ◽  
Emma Murphy ◽  
Rachel Mount ◽  
...  

Background: Mitochondrial dysfunction contributes to cardiac arrest induced brain injury and has been a target for neuroprotective therapies. An emerging concept suggests that hyperactivation of neuronal mitochondria following resuscitation results in hyperpolarization of the mitochondrial membrane during reperfusion, which drives generation of excess reactive oxygen species. Previous studies from our group demonstrated that limiting mitochondrial hyperactivity by non-invasively modulating mitochondrial function with specific near infrared light (NIR) wavelengths can reduce brain injury in small animal models of global and focal ischemia. Hypothesis: Inhibitory wavelengths of NIR will reduce neuronal injury and improve neurocognitive outcome in a clinically relevant swine model of cardiac arrest. Methods: Twenty-eight male and female adult swine were enrolled (3 groups: Sham, CA/CPR, and CA/CPR + NIR). Cardiac arrest (8 minutes) was induced with a ventricular pacing wire and followed by manual CPR with defibrillation and epinephrine every 30 seconds until return of spontaneous circulation (ROSC), 2 of the 20 swine that underwent CA did not achieve ROSC and were not enrolled. Treatment groups were randomized prior to arrest and blinded to the CPR team. Treatment was applied at onset of ROSC by irradiating the scalp with 750 nm and 950 nm LEDs (5W) for 2 hours. Results: Sham-operated animals all survived (8/8), whereas 22% of untreated animals subjected to cardiac arrest died within 45 min of ROSC (CA/CPR, n= 7/9). All swine treated with NIR survived the duration of the study (CA/CPR + NIR, n=9/9). Four days following cardiac arrest, neurological deficit score was improved in the NIR treatment group (50 ± 21 CA/CPR vs. 0.8 ± 0.8 CA/CPR + NIR, p < 0.05). Additionally, neuronal death in the CA1/CA3 regions of the hippocampus, assessed by counting surviving neurons with stereology, was attenuated by treatment with NIR (17917 ± 5534 neurons/mm 3 CA/CPR vs. 44655 ± 5637 neurons/mm 3 CA/CPR + NIR, p < 0.05). All data is reported as mean ± SEM. Conclusions: These data provide evidence that noninvasive modulation of mitochondria, achieved by transcranial irradiation of the brain with NIR, mitigates post-cardiac arrest brain injury.


2016 ◽  
Vol 34 (12) ◽  
pp. 610-626 ◽  
Author(s):  
Margaret A. Naeser ◽  
Paula I. Martin ◽  
Michael D. Ho ◽  
Maxine H. Krengel ◽  
Yelena Bogdanova ◽  
...  

1998 ◽  
Vol 67 (1) ◽  
pp. 33-40 ◽  
Author(s):  
R. M. Danen ◽  
Yong Wang ◽  
X. D. Li ◽  
W. S. Thayer ◽  
A. G. Yodh

2014 ◽  
Vol 120 (3) ◽  
pp. 670-683 ◽  
Author(s):  
Cécile Moro ◽  
Nabil El Massri ◽  
Napoleon Torres ◽  
David Ratel ◽  
Xavier De Jaeger ◽  
...  

Object Previous experimental studies have documented the neuroprotection of damaged or diseased cells after applying, from outside the brain, near-infrared light (NIr) to the brain by using external light-emitting diodes (LEDs) or laser devices. In the present study, the authors describe an effective and reliable surgical method of applying to the brain, from inside the brain, NIr to the brain. They developed a novel internal surgical device that delivers the NIr to brain regions very close to target damaged or diseased cells. They suggest that this device will be useful in applying NIr within the large human brain, particularly if the target cells have a very deep location. Methods An optical fiber linked to an LED or laser device was surgically implanted into the lateral ventricle of BALB/c mice or Sprague-Dawley rats. The authors explored the feasibility of the internal device, measured the NIr signal through living tissue, looked for evidence of toxicity at doses higher than those required for neuroprotection, and confirmed the neuroprotective effect of NIr on dopaminergic cells in the substantia nigra pars compacta (SNc) in an acute 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) model of Parkinson disease in mice. Results The device was stable in freely moving animals, and the NIr filled the cranial cavity. Measurements showed that the NIr intensity declined as distance from the source increased across the brain (65% per mm) but was detectable up to 10 mm away. At neuroprotective (0.16 mW) and much higher (67 mW) intensities, the NIr caused no observable behavioral deficits, nor was there evidence of tissue necrosis at the fiber tip, where radiation was most intense. Finally, the intracranially delivered NIr protected SNc cells against MPTP insult; there were consistently more dopaminergic cells in MPTP-treated mice irradiated with NIr than in those that were not irradiated. Conclusions In summary, the authors showed that NIr can be applied intracranially, does not have toxic side effects, and is neuroprotective.


2021 ◽  
Vol 9 ◽  
Author(s):  
Laura Bell ◽  
Vanessa Reindl ◽  
Jana A. Kruppa ◽  
Alexandra Niephaus ◽  
Simon H. Kohl ◽  
...  

Have you ever thought that light could tell you something about your brain? Light is a powerful tool that helps brain researchers understand the brain. Our eyes can only see &lt;1% of the total light around us. Some of the light is red, so-called near-infrared light. This type of light can travel through the head and the top layers of the brain, and thereby gives researchers important information about brain activity. The technique that uses near-infrared light has a long name: functional near-infrared spectroscopy (fNIRS). In this article, we will show you what a fNIRS machine looks like and what it is like to take part in a fNIRS experiment. We will explain how we can use near-infrared light to better understand the brain. Finally, we will give you some examples of what we use fNIRS for and how it might help children who face difficulties in their daily lives in the long run.


2016 ◽  
Vol 38 (6) ◽  
pp. 24-28 ◽  
Author(s):  
Michael R. Hamblin

Evidence is mounting that photobiomodulation therapy (shining near-infrared light) can benefit a wide range of brain disorders. The photons can penetrate into the brain where they stimulate production of energy in brain cells, and trigger numerous signaling pathways. Acute ischaemic stroke was the first indication that progressed to human clinical trials. Acute and chronic stages of traumatic brain injury were then investigated. Currently, psychiatric disorders such as depression, and neurodegenerative diseases such as Alzheimer's and Parkinson's are under investigation. Although showing great promise, more trials are clearly needed before the therapy will be accepted.


Sign in / Sign up

Export Citation Format

Share Document