scholarly journals Plasmon-induced transparency sensor for detection of minuscule refractive index changes in ultra-low index materials

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Shahriar Farhadi ◽  
Mehdi Miri ◽  
Ali Farmani

AbstractDetection of low-index materials such as aerogels and also detection of refractive index variations in these materials is still a challenging task. Here, a high figure of merit (FOM) sensor based on plasmon-induced transparency (PIT) is proposed for the detection of aerogel refractive index changes. In the proposed PIT sensor, the transparency window in an opaque region arises from the coupling between surface plasmon polariton (SPP) mode and planar waveguide mode. By comprising sub-wavelength grating (SWG) in the planar waveguide region, the maximum of the electric field of waveguide occurs in a low index media. This facilitates detection of the aerogels when they are used as the low index material (sensing material). Application of the subwavelength grating waveguide also improves the sensitivity of the sensor by a factor of six compared to a conventional structure with a homogenous waveguide. The proposed structure has a quality factor of Q ≥ 1800, and a reflection of 86%, and can detect the refractive index changes as low as Δn = 0.002 (around n = 1.0). The lineshape, Q-factor, and resonant wavelength of the transparency spectrum can be controlled by tailoring the structural parameters. Our work also has potential application in switching, filtering, and spectral shaping.

2016 ◽  
Vol 30 (14) ◽  
pp. 1650150
Author(s):  
Fang Chen ◽  
Duanzheng Yao

We demonstrate the realization of plasmon induced transparency (PIT) in a nanostructure composed of silver nanobars and a silver nanodisk. The optical properties of the planar metamaterials have been investigated theoretically in the paper. The classical coupled harmonic oscillator model demonstrates the PIT phenomenon in a nanodisk–nanobar system. Additionally, double PIT response is observed when two nanobars are located in proximity to the silver nanodisk. The PIT window wavelength and bandwidths can be efficiently tuned by controlling the geometric parameters such as the lengths of nanobars and the coupling distances between the nanodisk and nanobars. Moreover, the transparency window shows highly sensitive response to the refractive index of the environmental medium. A high figure of merit up to 15.5 of the asymmetrical system for refractive index sensing is achieved. The tunability of the PIT may have potential application on slow light and highly integrated optical circuits.


2021 ◽  
Author(s):  
Amir Mohammad Rezaei Zanganeh ◽  
Ali Farmani ◽  
Mohammad Hazhir Mozaffari ◽  
Ali Mir

Abstract Here, a novel plasmon-induced transparency (PIT) sensing platform based on a Kretschmann–Raether configuration with graphene/ J-aggregate materials is proposed. The J-aggregate material, despite its dielectric optical properties, can strongly confine the surface wave-like metal layers. These features promise to highly enlarge the range of plasmonic sensing devices. Therefore, the sensing parameters have been numerically and experimentally investigated using the finite-difference time-domain (FDTD) method and atomic force microscopy (AFM). The results show that the PIT resonance of the structure has a sharp reflection, in turn, leads to high sensitivity. To deep benchmark the structure the effects of the structural parameters and environmental variables such as temperature and magnetic field on the sensing properties of the device are analyzed in detail. The maximum sensitivity is obtained as high as 1400 angle per refractive-index unit (RIU) with an extra high figure of merit of 36 RIU-1 around the PIT resonance angle of 53 ̊. By considering the magnetic field of 0.01T and graphene chemical potential of mc=0.4 eV, and environmental room temperature, the proposed structure may potentially be applied in advanced off-chip PIT sensors.


2009 ◽  
Vol 16 (01) ◽  
pp. 11-17
Author(s):  
L. ZHANG

Based on the density-matrix approach and iterative treatment, a detailed procedure for the calculation of the linear and nonlinear intersubband refractive index changes (RICs) in wurtzite GaN-based coupling quantum wells (CQWs) is given. The simple analytical formulas for electronic eigenstates and the linear and third-order nonlinear RICs in the systems are also deduced. Numerical result on a typical AlGaN / GaN CQW shows that the linear and nonlinear RICs sensitively depend on the structural parameters of the CQW system as well as the doped fraction of nitride semicondutor.


2020 ◽  
Vol 15 (1) ◽  
Author(s):  
Zhimin Liu ◽  
Enduo Gao ◽  
Zhenbin Zhang ◽  
Hongjian Li ◽  
Hui Xu ◽  
...  

AbstractThe plasmon-induced transparency (PIT), which is destructive interference between the superradiation mode and the subradiation mode, is studied in patterned graphene-based terahertz metasurface composed of graphene ribbons and graphene strips. As the results of finite-difference time-domain (FDTD) simulation and coupled-mode theory (CMT) fitting, the PIT can be dynamically modulated by the dual-mode. The left (right) transmission dip is mainly tailored by the gate voltage applied to graphene ribbons (stripes), respectively, meaning a dual-mode on-to-off modulator is realized. Surprisingly, an absorbance of 50% and slow-light property of 0.7 ps are also achieved, demonstrating the proposed PIT metasurface has important applications in absorption and slow-light. In addition, coupling effects between the graphene ribbons and the graphene strips in PIT metasurface with different structural parameters also are studied in detail. Thus, the proposed structure provides a new basis for the dual-mode on-to-off multi-function modulators.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3181 ◽  
Author(s):  
Kunhua Wen ◽  
Li Chen ◽  
Jinyun Zhou ◽  
Liang Lei ◽  
Yihong Fang

In this paper, multiple Fano resonances preferred in the refractive index sensing area are achieved based on sub-wavelength metal-insulator-metal (MIM) waveguides. Two slot cavities, which are placed between or above the MIM waveguides, can support the bright modes or the dark modes, respectively. Owing to the mode interferences, dual Fano resonances with obvious asymmetrical spectral responses are achieved. High sensitivity and high figure of merit are investigated by using the finite-difference time-domain (FDTD) method. In view of the development of chip-scale integrated photonics, two extra slot cavities are successively added to the structure, and consequently, three and four ultra-sharp Fano peaks with considerable performances are obtained, respectively. It is believed that this proposed structure can find important applications in the on-chip optical sensing and optical communication areas.


2019 ◽  
Vol 27 (5) ◽  
pp. 7373 ◽  
Author(s):  
Wenjuan Zhao ◽  
Jiwei Qi ◽  
Yao Lu ◽  
Ride Wang ◽  
Qi Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document