scholarly journals Comprehensive molecular-genetic analysis of mid-frequency sensorineural hearing loss

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zuzana Pavlenkova ◽  
Lukas Varga ◽  
Silvia Borecka ◽  
Miloslav Karhanek ◽  
Miloslava Huckova ◽  
...  

AbstractThe genetic heterogeneity of sensorineural hearing loss (SNHL) is a major hurdle to the detection of disease-causing variants. We aimed to identify underlying causal genes associated with mid-frequency hearing loss (HL), which contributes to less than about 1% of SNHL cases, by whole exome sequencing (WES). Thirty families segregating mid-frequency SNHL, in whom biallelic GJB2 mutations had been previously excluded, were selected from among 851 families in our DNA repository of SNHL. DNA samples from the probands were subjected to WES analysis and searched for candidate variants associated with SNHL. We were able to identify the genetic aetiology in six probands (20%). In total, we found three pathogenic and three likely pathogenic variants in four genes (COL4A5, OTOGL, TECTA, TMPRSS3). One more proband was a compound heterozygote for a pathogenic variant and a variant of uncertain significance (VUS) in MYO15A gene. To date, MYO15A and TMPRSS3 have not yet been described in association with mid-frequency SNHL. In eight additional probands, eight candidate VUS variants were detected in five genes (DIAPH1, MYO7A, TECTA, TMC1, TSPEAR). Seven of these 16 variants have not yet been published or mentioned in the available databases. The most prevalent gene was TECTA, identified in 23% of all tested families. Furthermore, we confirmed the hypothesis that a substantive portion of cases with this conspicuous audiogram shape is a consequence of a genetic disorder.

2021 ◽  
Author(s):  
Zuzana Pavlenkova ◽  
Lukas Varga ◽  
Silvia Borecka ◽  
Miloslav Karhanek ◽  
Miroslava Huckova ◽  
...  

Abstract The genetic heterogeneity of sensorineural hearing loss (SNHL) is a major hurdle to the detection of disease-causing variants. We aimed to identify underlying causal genes associated with mid-frequency hearing loss (HL), which contributes to less than about 1% of SNHL cases, by whole exome sequencing (WES). Thirty families segregating mid-frequency SNHL, in whom biallelic GJB2 mutations had been previously excluded, were selected from among 851 families in our DNA repository of SNHL. DNA samples from the probands were subjected to WES analysis and searched for candidate variants associated with SNHL. We were able to identify the genetic aetiology in six probands (20%). In total, we found three pathogenic and three likely pathogenic variants in four genes COL4A5, OTOGL, TECTA, TMPRSS3). One proband was a compound heterozygote for a pathogenic variant and a variant of uncertain significance (VUS) in MYO15A gene. To date, MYO15A and TMPRSS3 have not yet been described in association with mid-frequency SNHL. In eight additional probands, eight candidate VUS variants were detected in five genes (DIAPH1, MYO7A, TECTA, TMC1, TSPEAR). Seven of these 16 variants have not yet been published or mentioned in the available databases. The most prevalent gene was TECTA, identified in 23% of all tested families. Furthermore, we confirmed the hypothesis that a substantive portion of cases with this conspicuous audiogram shape is a consequence of a genetic disorder.


2017 ◽  
Vol 63 (2) ◽  
pp. 110-113
Author(s):  
Nina A. Makretskaya ◽  
Olga B. Bezlepkina ◽  
Olga A. Chikulaeva ◽  
Evgeny V. Vasilyev ◽  
Vasiliy M. Petrov ◽  
...  

Congenital hypothyroidism is a genetically heterogeneous group of diseases caused by two mechanisms: gland dysgenesis and dyshormonogenesis. The disease pattern includes a number of syndromic forms, one of which is a combination of congenital hypothyroidism and sensorineural hearing loss (Pendred syndrome) initially associated with SLC26A4 gene defects. The article describes a patient with clinical manifestations of Pendred syndrome who was diagnosed with a TPO gene defect during a molecular genetic analysis using next generation sequencing (NGS). Therefore, a combination of congenital hypothyroidism and sensorineural hearing loss can have a different molecular basis. Our findings illustrate the value of NGS for genetic verification of the diagnosis.


Author(s):  
В.Ю. Данильченко ◽  
М.В. Зыцарь ◽  
Е.А. Маслова ◽  
М.С. Бады-Хоо ◽  
И.В. Морозов ◽  
...  

Мутации в гене SLC26A4 являются частой причиной потери слуха во многих регионах мира. В работе приводятся результаты молекулярно-генетического анализа (с использованием секвенирования по Сэнгеру) последовательности гена SLC26A4, впервые проведенного в выборке пациентов с потерей слуха неустановленной этиологии (n=232) из Республик Тыва и Алтай. Установлены контрастные различия патогенетического вклада мутаций в гене SLC26A4 в этиологию нарушения слуха у коренных жителей этих географически близких регионов: 28,2% - для тувинцев и 4,3% - для алтайцев. Выявлены как уже известные, так и новые патогенные варианты, а также широкий спектр полиморфных вариантов гена SLC26A4. Mutations in the SLC26A4 gene are a common cause of hearing loss in many regions of the world. This paper presents the results of molecular genetic analysis (by Sanger sequencing) of the SLC26A4 sequence, first performed in the sample of patients with hearing loss of unknown etiology (n=232) from the Tyva Republic and the Altai Republic. Contrast differences of the pathogenic contribution of SLC26A4 mutations to the etiology of hearing impairment were revealed in the indigenous peoples of these geographically close regions: 28.2% for Tuvinians and 4.3% for Altaians. Both known and novel pathogenic variants as well as a wide range of polymorphic variants were found in the SLC26A4 gene sequence.


Hereditas ◽  
2020 ◽  
Vol 157 (1) ◽  
Author(s):  
Jing Yu ◽  
Wei Jiang ◽  
Li Cao ◽  
Xiaoxue Na ◽  
Jiyun Yang

AbstractMutations in HARS2 are one of the genetic causes of Perrault syndrome, characterized by sensorineural hearing loss (SNHL) and ovarian dysfunction. Here, we identified two novel putative pathogenic variants of HARS2 in a Chinese family with sensorineural hearing loss including two affected male siblings, c.349G > A (p.Asp117Asn) and c.908 T > C (p.Leu303Pro), through targeted next-generation sequencing methods. The two affected siblings (13 and 11 years old) presented with early-onset, rapidly progressive SNHL. The affected siblings did not have any inner ear malformations or delays in gross motor development. Combined with preexisting clinical reports, Perrault syndrome may be latent in some families with non-syndromic deafness associated with HARS2 mutations. The definitive diagnosis of Perrault syndrome based on clinical features alone is a challenge in sporadic males, and preadolescent females with no signs of POI. Our findings further expanded the existing spectrum of HARS2 variants and Perrault syndrome phenotypes, which will assist in molecular diagnosis and genetic counselling of patients with HARS2 mutations.


2005 ◽  
Vol 133 (1) ◽  
pp. 94-99 ◽  
Author(s):  
Collin S. Karmody ◽  
Nikolas H. Blevins ◽  
Anil K. Lalwani

OBJECTIVE: To present a syndrome composed of sensorineural hearing loss, early greying of scalp hair, and adult-onset essential tremor. STUDY DESIGN: Retrospective chart review. SETTING: Tertiary care academic hospital. RESULTS: Three individuals were seen with this triad, each with family members with similar features. Our patients are a 65-year-old man and two women in their 40s. Two noted hearing loss in adulthood, one as a child. All had complete greying in their 20s. The women developed essential tremor in their 20s, and the man in his 50s. All individuals have blue eyes without heterochromia. Additional evaluation failed to further categorize these patients. Each has two or more immediate family members with a combination of these findings. Molecular genetic testing suggests this is not a variant of Waardenburg syndrome. CONCLUSION: We believe this represents a previously unreported hereditary syndrome. SIGNIFICANCE: This new syndrome should be considered in the context of other syndromes involving audition, pigmentation, and movement.


Genes ◽  
2019 ◽  
Vol 10 (12) ◽  
pp. 1031 ◽  
Author(s):  
Muhammad Noman ◽  
Rafaqat Ishaq ◽  
Shazia A. Bukhari ◽  
Zubair M. Ahmed ◽  
Saima Riazuddin

Hearing loss is a genetically heterogeneous disorder affecting approximately 360 million people worldwide and is among the most common sensorineural disorders. Here, we report a genetic analysis of seven large consanguineous families segregating prelingual sensorineural hearing loss. Whole-exome sequencing (WES) revealed seven different pathogenic variants segregating with hearing loss in these families, three novel variants (c.1204G>A, c.322G>T, and c.5587C>T) in TMPRSS3, ESRRB, and OTOF, and four previously reported variants (c.208C>T, c.6371G>A, c.226G>A, and c.494C>T) in LRTOMT, MYO15A, KCNE1, and LHFPL5, respectively. All identified variants had very low frequencies in the control databases and were predicted to have pathogenic effects on the encoded proteins. In addition to being familial, we also found intersibship locus heterogeneity in the evaluated families. The known pathogenic c.226C>T variant identified in KCNE1 only segregates with the hearing loss phenotype in a subset of affected members of the family GCNF21. This study further highlights the challenges of identifying disease-causing variants for highly heterogeneous disorders and reports the identification of three novel and four previously reported variants in seven known deafness genes.


2020 ◽  
pp. jmedgenet-2020-106892
Author(s):  
Xue Gao ◽  
Sha-Sha Huang ◽  
Shi-Wei Qiu ◽  
Yu Su ◽  
Wei-Qian Wang ◽  
...  

BackgroundGermline variants in PTPN11 are the primary cause of Noonan syndrome with multiple lentigines (NSML) and Noonan syndrome (NS), which share common skin and facial symptoms, cardiac anomalies and retardation of growth. Hearing loss is considered an infrequent feature in patients with NSML/NS. However, in our cohort, we identified a group of patients with PTPN11 pathogenic variants that were primarily manifested in congenital sensorineural hearing loss (SNHL). This study evaluated the incidence of PTPN11-related NSML or NS in patients with congenital SNHL and explored the expression of PTPN11 and the underlying mechanisms in the auditory system.MethodsA total of 1502 patients with congenital SNHL were enrolled. Detailed phenotype-genotype correlations were analysed in patients with PTPN11 variants. Immunolabelling of Ptpn11 was performed in P35 mice. Zebrafish with Ptpn11 knockdown/mutant overexpression were constructed to further explore mechanism underlying the phenotypes.ResultsTen NSML/NS probands were diagnosed via the identification of pathogenic variants of PTPN11, which accounted for ~0.67% of the congenital SNHL cases. In mice cochlea, Shp2, which is encoded by Ptpn11, is distributed in the spiral ganglion neurons, hair cells and supporting cells of the inner ear. In zebrafish, knockdown of ptpn11a and overexpression of mutant PTPN11 were associated with a significant decrease in hair cells and supporting cells. We concluded that congenital SNHL could be a major symptom in PTPN11-associated NSML or NS. Other features may be mild, especially in children.ConclusionScreening for PTPN11 in patients with congenital hearing loss and variant-based diagnoses are recommended.


1995 ◽  
Vol 109 (10) ◽  
pp. 930-934 ◽  
Author(s):  
Siraj M. Zakzouk ◽  
Samia H. Sobki ◽  
Faizeh Mansour ◽  
Fatma H. Al Anazy

AbstractA follow-up of seven patients with the autosomal recessive inherited syndrome of distal renal tubular acidosis (RTA) and sensorineural hearing loss is described. Five patients were diagnosed as having primary distal renal tubular acidosis and rickets, four were found to have severe sensorineural hearing loss of over 80 dB: two of which are brothers. Two patients were diagnosed as having secondary distal renal acidosis due to a genetic disorder called osteopetrosis; they are brothers and their audiograms showed a mild conductive hearing loss of an average 35 dB bilaterally. All patients had growth retardation with improvement due to alkaline therapy but their hearing loss was not affected by the medication. The pedigrees of two families with half sibs showed the familial incidence for consanguineous marriage. Consanguinity was found to be positive in five out of the seven patients. The tribal tradition in Saudi Arabia fosters consanguineous marriages for cultural and social reasons and pre-arranged marriages are still seen.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tian-Yi Cui ◽  
Xue Gao ◽  
Sha-Sha Huang ◽  
Yan-Yan Sun ◽  
Si-Qi Zhang ◽  
...  

Hereditary hearing loss is one of the most common sensory disabilities worldwide. Mutation of POU domain class 4 transcription factor 3 (POU4F3) is considered the pathogenic cause of autosomal dominant nonsyndromic hearing loss (ADNSHL), designated as autosomal dominant nonsyndromic deafness 15. In this study, four novel variants in POU4F3, c.696G>T (p.Glu232Asp), c.325C>T (p.His109Tyr), c.635T>C (p.Leu212Pro), and c.183delG (p.Ala62Argfs∗22), were identified in four different Chinese families with ADNSHL by targeted next-generation sequencing and Sanger sequencing. Based on the American College of Medical Genetics and Genomics guidelines, c.183delG (p.Ala62Argfs∗22) is classified as a pathogenic variant, c.696G>T (p.Glu232Asp) and c.635T>C (p.Leu212Pro) are classified as likely pathogenic variants, and c.325C>T (p.His109Tyr) is classified as a variant of uncertain significance. Based on previous reports and the results of this study, we speculated that POU4F3 pathogenic variants are significant contributors to ADNSHL in the East Asian population. Therefore, screening of POU4F3 should be a routine examination for the diagnosis of hereditary hearing loss.


Sign in / Sign up

Export Citation Format

Share Document