scholarly journals Noncentral forces mediated between two inclusions in a bath of active Brownian rods

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mahmoud Sebtosheikh ◽  
Ali Naji

AbstractUsing Brownian Dynamics simulations, we study effective interactions mediated between two identical and impermeable disks (inclusions) immersed in a bath of identical, active (self-propelled), Brownian rods in two spatial dimensions, by assuming that the self-propulsion axis of the rods may generally deviate from their longitudinal axis. When the self-propulsion is transverse (perpendicular to the rod axis), the accumulation of active rods around the inclusions is significantly enhanced, causing a more expansive steric layering (ring formation) of the rods around the inclusions, as compared with the reference case of longitudinally self-propelling rods. As a result, the transversally self-propelling rods also mediate a significantly longer ranged effective interaction between the inclusions. The bath-mediated interaction arises due to the overlaps between the active-rod rings formed around the inclusions, as they are brought into small separations. When the self-propulsion axis is tilted relative to the rod axis, we find an asymmetric imbalance of active-rod accumulation around the inclusion dimer. This leads to a noncentral interaction, featuring an anti-parallel pair of transverse force components and, hence, a bath-mediated torque on the dimer.

2019 ◽  
Vol 21 (42) ◽  
pp. 23447-23458 ◽  
Author(s):  
Manuella Cerbelaud ◽  
Khaoula Lebdioua ◽  
Công Tâm Tran ◽  
Benoît Crespin ◽  
Anne Aimable ◽  
...  

92 bead colloids are used to study the self-assembly of large surface anistropic particles.


RSC Advances ◽  
2018 ◽  
Vol 8 (24) ◽  
pp. 13526-13536
Author(s):  
Yali Wang ◽  
Xuehao He

To mimic the unique properties of capsid (protein shell of a virus), we performed Brownian dynamics simulations of the self-assembly of amphiphilic truncated cone particles with anisotropic interactions.


Soft Matter ◽  
2015 ◽  
Vol 11 (21) ◽  
pp. 4158-4166 ◽  
Author(s):  
Vasileios Prymidis ◽  
Harmen Sielcken ◽  
Laura Filion

We study the self-assembly of a system of self-propelled, Lennard-Jones particles using Brownian dynamics simulations.


Langmuir ◽  
2011 ◽  
Vol 27 (2) ◽  
pp. 835-842 ◽  
Author(s):  
Costas Georgiadis ◽  
Othonas Moultos ◽  
Leonidas N. Gergidis ◽  
Costas Vlahos

Author(s):  
Konstantinos Manikas ◽  
Markus Hütter ◽  
Patrick D. Anderson

AbstractThe effect of time-dependent external fields on the structures formed by particles with induced dipoles dispersed in a viscous fluid is investigated by means of Brownian Dynamics simulations. The physical effects accounted for are thermal fluctuations, dipole-dipole and excluded volume interactions. The emerging structures are characterised in terms of particle clusters (orientation, size, anisotropy and percolation) and network structure. The strength of the external field is increased in one direction and then kept constant for a certain amount of time, with the structure formation being influenced by the slope of the field-strength increase. This effect can be partially rationalized by inhomogeneous time re-scaling with respect to the field strength, however, the presence of thermal fluctuations makes the scaling at low field strength inappropriate. After the re-scaling, one can observe that the lower the slope of the field increase, the more network-like and the thicker the structure is. In the second part of the study the field is also rotated instantaneously by a certain angle, and the effect of this transition on the structure is studied. For small rotation angles ($$\theta \le 20^{{\circ }}$$ θ ≤ 20 ∘ ) the clusters rotate but stay largely intact, while for large rotation angles ($$\theta \ge 80^{{\circ }}$$ θ ≥ 80 ∘ ) the structure disintegrates and then reforms, due to the nature of the interactions (parallel dipoles with perpendicular inter-particle vector repel each other). For intermediate angles ($$20<\theta <80^{{\circ }}$$ 20 < θ < 80 ∘ ), it seems that, during rotation, the structure is altered towards a more network-like state, as a result of cluster fusion (larger clusters). The details provided in this paper concern an electric field, however, all results can be projected into the case of a magnetic field and paramagnetic particles.


2021 ◽  
Author(s):  
Dillip Kumar Mohapatra ◽  
Philip James Camp ◽  
John Philip

We probe the influence of particle size polydispersity on field-induced structures and structural transitions in magnetic fluids (ferrofluids) using phase contrast optical microscopy, light scattering and Brownian dynamics simulations. Three...


Author(s):  
Oliver Henrich ◽  
Fabian Weysser ◽  
Michael E. Cates ◽  
Matthias Fuchs

Brownian dynamics simulations of bidisperse hard discs moving in two dimensions in a given steady and homogeneous shear flow are presented close to and above the glass transition density. The stationary structure functions and stresses of shear-melted glass are compared quantitatively to parameter-free numerical calculations of monodisperse hard discs using mode coupling theory within the integration through transients framework. Theory qualitatively explains the properties of the yielding glass but quantitatively overestimates the shear-driven stresses and structural anisotropies.


Sign in / Sign up

Export Citation Format

Share Document