scholarly journals Experimental investigation and modelling of a laboratory-scale latent heat storage with cylindrical PCM capsules

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petr Jančík ◽  
Michal Schmirler ◽  
Tomáš Hyhlík ◽  
Adam Bláha ◽  
Pavel Sláma ◽  
...  

AbstractHeat storage efficiency is required to maximize the potential of combined heat and power generation or renewable energy sources for heating. Using a phase change material (PCM) could be an attractive choice in several instances. Commercially available paraffin-based PCM was investigated using T-history method with sufficient agreement with the data from the manufacturer. The introduced LHTES with cylindrical capsules is simple and scalable in capacity, charging/discharging time, and temperature level. The overall stored energy density is 9% higher than the previously proposed design of similar design complexity. The discharging process of the designed latent heat thermal energy storage (LHTES) was evaluated for two different flow rates. The PCM inside the capsules and heat transfer fluid (HTF) temperature, as well as the HTF flow rate, were measured. The lumped parameter numerical model was developed and validated successfully. The advantage of the proposed model is its computational simplicity, and thus the possibility to use it in simulations of a whole heat distribution network. The so-called state of charge (SoC), which plays a crucial role in successful heat storage management, is a part of the evaluation of both experimental and computational data.

2019 ◽  
Vol 13 (3) ◽  
pp. 5653-5664
Author(s):  
M. S. M. Al-Jethelah ◽  
H. S. Dheyab ◽  
S. Khudhayer ◽  
T. K. Ibrahim ◽  
A. T. Al-Sammarraie

Latent heat storage has shown a great potential in many engineering applications. The utilization of latent heat storage has been extended from small scales to large scales of thermal engineering applications. In food industry, latent heat has been applied in food storage. Another potential application of latent heat storage is to maintain hot beverages at a reasonable drinking temperature for longer periods. In the present work, a numerical calculation was performed to investigate the impact of utilizing encapsulated phase change material PCM on the temperature of hot beverage. The PCM was encapsulated in rings inside the cup. The results showed that the encapsulated PCM reduced the coffee temperature to an acceptable temperature in shorter time. In addition, the PCM maintained the hot beverage temperature at an acceptable drinking temperature for rational time.


Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2264 ◽  
Author(s):  
Sebastian Ammann ◽  
Andreas Ammann ◽  
Rebecca Ravotti ◽  
Ludger Fischer ◽  
Anastasia Stamatiou ◽  
...  

The problem of emulsification between Phase Change Material (PCM) and Heat Transfer Fluid (HTF) in direct contact latent heat storage systems has been reported in various studies. This issue causes the PCM to flow out of the storage tank and crystallize at unwanted locations and thus presents a major limitation for the proper operation of such systems. These anomalies become more pronounced when high HTF flow rates are employed with the aim to achieve fast heat transfer rates. The goal of this paper is to find a method which will enable the fast separation of the formed emulsion and thus the uninterrupted operation of the storage unit. In this study, three separation methods were examined and the use of superhydrophobic filters was chosen as the best candidate for the demulsification of the PCM and HTF mixtures. The filter was produced by processing of a melamine sponge with different superhydrophobic adhesives and was tested with emulsions closely resembling the ones formed in a real direct contact setup. The superhydrophobic filter obtained, was able to separate the emulsions effectively while presenting a very high permeability (up to 1,194,980 kg h−1 m−2 bar−1). This is the first time the use of a superhydrophobic sponge has been investigated in the context of demulsification in direct contact latent heat storage.


2012 ◽  
Vol 512-515 ◽  
pp. 3007-3010
Author(s):  
Jing Yu Huang ◽  
Shi Lei Lv ◽  
Chen Xi Zhang ◽  
Zhi Wei Wang

This study focuses on the preparation, thermal properties of alkanes eutectic mixtures (n-Octadecane/n-Eicosane, n-Octadecane/n-Docosane and n-Heptadecane /n-Eicosane) as candidate phase change material (PCM) for low temperature latent heat storage systems in building envelopes. Their melting temperature and latent heat were tested by Differential scanning calorimetry (DSC). The testing values were closed to calculation values of accepted theory that ensured the reliability of those datas. The results indicated n-Octadecane/n-Docosane eutectic mixture was more promising PCM for buildings in terms of melting temperature (25.3°C) and latent heat values of melting (158.2J/g).


Sign in / Sign up

Export Citation Format

Share Document