scholarly journals Acoustic-level and language-specific processing of native and non-native phonological sequence onsets in the low gamma and theta-frequency bands

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Monica Wagner ◽  
Silvia Ortiz-Mantilla ◽  
Mateusz Rusiniak ◽  
April A. Benasich ◽  
Valerie L. Shafer ◽  
...  

AbstractAcoustic structures associated with native-language phonological sequences are enhanced within auditory pathways for perception, although the underlying mechanisms are not well understood. To elucidate processes that facilitate perception, time–frequency (T–F) analyses of EEGs obtained from native speakers of English and Polish were conducted. Participants listened to same and different nonword pairs within counterbalanced attend and passive conditions. Nonwords contained the onsets /pt/, /pət/, /st/, and /sət/ that occur in both the Polish and English languages with the exception of /pt/, which never occurs in the English language in word onset. Measures of spectral power and inter-trial phase locking (ITPL) in the low gamma (LG) and theta-frequency bands were analyzed from two bilateral, auditory source-level channels, created through source localization modeling. Results revealed significantly larger spectral power in LG for the English listeners to the unfamiliar /pt/ onsets from the right hemisphere at early cortical stages, during the passive condition. Further, ITPL values revealed distinctive responses in high and low-theta to acoustic characteristics of the onsets, which were modulated by language exposure. These findings, language-specific processing in LG and acoustic-level and language-specific processing in theta, support the view that multi scale temporal processing in the LG and theta-frequency bands facilitates speech perception.

2020 ◽  
Author(s):  
Charalabos Papageorgiou ◽  
Anastasios E. Giannopoulos ◽  
Athanasios S. Fokas ◽  
Paul M. Thompson ◽  
Nikolaos C. Kapsalis ◽  
...  

ABSTRACTHumans are equipped with the so-called Mental Time Travel (MTT) ability, which allows them to consciously construct and elaborate past or future scenes. The mechanisms underlying MTT remain elusive. This study focused on the late positive potential (LPP) and alpha oscillations, considering that LPP covaries with the temporal continuity whereas the alpha oscillations index the temporal organization of perception. To that end, subjects were asked to focus on performing two mental functions engaging working memory, which involved mental self-projection into either the present-past (PP) border or the present-future (PF) border. To evaluate underlying mechanisms, the evoked frontal late positive potentials (LPP) as well as their cortical sources were analyzed via the standardized low-resolution brain electromagnetic tomography (sLORETA) technique. The LPP amplitudes - in the left lateral prefrontal areas that were elicited during PF tasks - were significantly higher than those associated with PP, whereas opposite patterns were observed in the central and right prefrontal areas. Crucially, the LPP activations of both the PP and PF self-projections overlapped with the brain’s default mode network and related interacting areas. Finally, we found enhanced alpha-related activation with respect to PP in comparison to PF, predominantly over the right hemisphere central brain regions (specifically, the precentral gyrus). These findings confirm that the two types of self-projection, as reflected by the frontally-distributed LPP, share common cortical resources that recruit different brain regions in a balanced way. This balanced distribution of brain activation might signify that biological time tends to behave in a homeostatic way.


2021 ◽  
Author(s):  
Victor Oswald ◽  
Younes Zerouali ◽  
Aubrée Boulet-Craig ◽  
Maja Krajinovic ◽  
Caroline Laverdière ◽  
...  

Abstract Verbal fluency (VF) is a heterogeneous test that requires executive functions as well as language abilities. The purpose of this study was to elucidate the specificity of the resting state MEG correlates of the executive and language components. To this end, we administered a VFtest, another verbal test (Vocabulary), and another executive test (Trail Making Test), and we recorded 5-min eyes-open resting-state MEG data in 28 healthy participants. We used source-reconstructed spectral power estimates to compute correlation/anticorrelation MEG clusters with the performance at each test, as well as with the advantage in performance between tests, across individuals using cluster-level statisticsin the standard frequency bands. By obtaining conjunction clusters between verbal fluency scores and factor loading obtained for verbal fluency and each of the two other tests, we showed a core of slow clusters (delta to beta) localized in the right hemisphere, in adjacent parts of the premotor, pre-central and post-central cortex in the mid-lateral regions related to executive monitoring. We also found slow parietal clusters bilaterally and a cluster in the gamma 2 and 3 bandsin the left inferior frontal gyrus likely associated with phonological processinginvolved in verbal fluency.


2017 ◽  
Vol 41 (S1) ◽  
pp. S348-S349
Author(s):  
E. Mnatsakanian ◽  
M. Sharaev ◽  
V. Krjukov ◽  
O. Antipova ◽  
V. Krasnov

IntroductionThe knowledge on brain mechanisms of psychopathology can be very useful for the diagnosis and treatment of patients.ObjectivesPatients with major depressive disorder (MDD) show attention bias to the negative emotional stimuli. Automatic (unconscious) emotional processing in such patients may become a prospective biomarker for depression.AimsWe aimed at studying the EEG-correlates of unconscious expectation of angry human faces in MDD patients compared to healthy controls.Methods128-channel EEG was recorded in MDD (23 females and 7 males) and in healthy volunteers (22 females and 8 males) while they categorized pictures as humans or animals. Half of the pictures were neutral and half were showing the faces of angry humans or animals. The pictures were preceded by cues (one for each category), which meaning was not explained to the participants. We performed the wavelet analysis on EEG recorded during the face expectation period: 1000–2000 ms from the cue onset.ResultsWe found the emotional modulation (EM) in EEG rhythms during the expectation of angry vs. neutral faces in both groups. Statistical comparison of the spectral power using 2 × 2 factorial design showed that the EM differences (P < 0.05) between the groups were in the left parietal locations in 9 Hz and in 16–18 Hz, in the right parietal locations in 27–28 Hz, and in the right frontal area in 30–31 Hz.ConclusionsThe unconscious expectation of angry vs. neutral faces resulted in EM differences between the MDD and healthy controls in the right frontal and bilateral parietal areas mostly in beta and gamma ranges.Disclosure of interestThe authors have not supplied their declaration of competing interest.


2013 ◽  
Vol 479-480 ◽  
pp. 480-485
Author(s):  
Ming Chung Ho ◽  
Chin Fei Huang ◽  
Chia Yi Chou ◽  
Ming Chi Lu ◽  
Chen Hsieh ◽  
...  

Brain dynamics is an important issue in understanding child development. However, very little research of the event-related responses has been used to explore changes during childhood. The aim of this study was to investigate mature changes in spatiotemporal organization of brain dynamics. We hypothesized that oscillatory event-related brain activity were affected by age-related changes. The sample include three age groups, namely 7 years (N = 18), 11 years (N = 18), and adults (N = 18). The event-related spectral power (ERPSP), and inter-trial phase locking (ITPL) of the event-related potentials (ERPs) were obtained from the time-frequency analysis of the auditory oddball task. Results revealed that: (a) decreased theta power, but alpha power increased with age; (b) the values of ITPL in the theta and alpha bands increased with age. These suggest that ERPSP, and ITPL provide useful indicators of cognitive maturation processes in children aged 7 and 11 years.


Psychiatry ◽  
2020 ◽  
Vol 18 (3) ◽  
pp. 14-21
Author(s):  
E. V. Iznak ◽  
E. V. Damyanovich ◽  
N. S. Levchenko ◽  
I. V. Oleichik ◽  
A. F. Iznak

Background: non-suicidal self-injury (NSSI) in adolescence is a significant risk factor for suicide, and therefore, the search for neurobiological markers and predictors of risk for suicidal intentions and actions seems to be an urgent task. In particular, quantitative EEG parameters can be such predictors.Objective: to identify the features of EEG in female adolescents with endogenous depressive conditions, manifested only by NSSI without suicidal intentions, in comparison with the EEG of patients who had suicidal auto-aggressive behavior (SAB) in the structure of depression.Patients and methods: the study was conducted as a comparative clinical and neurophysiological. The study included 45 female patients aged 16–25 years with endogenous depressive conditions, divided into 2 subgroups: those who showed only NSSI (NSSI subgroup, 21 patients), or who had a history of SAB (SAB subgroup, 24 patients). Clinical-psychopathological, psychometric, neurophysiological and statistical methods were used.Results and its discussion: intergroup differences were revealed in relation to the ratio and hemispheric asymmetry of the EEG spectral power of narrow frequency sub-bands of the parietal-occipital alpha rhythm. In the SAB subgroup alpha-2 (9–11 Hz) rhythm spectral power is higher than in the NSSI subgroup, the focus of alpha-2 spectral power is located in the right hemisphere, and alpha-3 sub-band (11–13 Hz) spectral power is higher than of alpha-1 (8–9 Hz). In the NSSI subgroup, alpha-1 (8–9 Hz) sub-band spectral power are higher than of alpha-3 (11–13 Hz), and focuses of alpha-2 (9–11 Hz) and alpha-3 (11–13 Hz) rhythms are localized in the left hemisphere. The results are discussed in terms of functional specialization of the brain hemispheres in relation to the regulation of emotions and control of behavior.Conclusions: the spatial distribution of the EEG frequency components in the SAB subgroup reflects the greater activation of the brain left hemisphere that is more typical for the EEG of individuals with an increased risk of suicide. In the NSSI subgroup, the right hemisphere is relatively more activated that is more typical for EEG in depressive disorders.The results obtained allow the use of quantitative EEG data to clarify the degree of suicidal risk in depressed female adolescents with non-suicidal self-injury.


Psychiatry ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 39-45
Author(s):  
E. V. Damyanovich ◽  
E. V. Iznak ◽  
I. V. Oleichik ◽  
A. F. Iznak

Background: the study of clinical and neurophysiological aspects of non-suicidal self-injurious behavior (NSSI), as one of the forms and risk factors for suicidal behavior in adolescents, including those suffering from mental disorders, is an urgent medical and social scientific task. Objective: To identify the features of EEG in depressive adolescent females with NSSI compared with EEG of age norm. Patients and methods: the study included 60 female patients aged 16–25 years with NSSI in the structure of endogenous depressive conditions, and 20 healthy subjects of the same gender and age. Clinical, psychopathological, psychometric, neurophysiological and statistical methods were used. Topographic EEG mapping revealed differences in the background EEG quantitative parameters of two studied groups. Results and discussion: spectral power values of alpha-2 (9–11 Hz) and alpha-1 (8–9 Hz) EEG frequency components in occipital-parietal and temporal leads, of theta-2 activity (6–8 Hz) in central-parietal leads, as well as of delta activity (2–4 Hz) in frontal and anterior temporal leads were higher in the left hemisphere, reflected increased activation of the right hemisphere. Generalized bilaterally synchronous alpha-theta bursts were registered regularly in EEG of NSSI patients, as well. Conclusions: the spatial distribution of EEG frequency components in depressive patients with NSSI indicates relatively decreased functional state of the cortex, especially of the left hemisphere and of its anterior regions, responsible for voluntary control of activity, with higher level of activation of temporal regions of the right hemisphere, associated with formation of negative emotions, and increased excitability of brain limbic-diencephalic structures, that may underlie poor controlled impulsive behavior.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Simone Messerotti Benvenuti ◽  
Giulia Buodo ◽  
Rocco Mennella ◽  
Elisa Dal Bò ◽  
Daniela Palomba

AbstractThe capability model of alpha asymmetries posits that state emotional manipulations are a more powerful detector of depression-related motivational deficits than alpha activity at rest. The present study used a time-frequency approach to investigate the temporal dynamics of event-related changes in alpha power during passive viewing of emotional pictures in individuals with dysphoria (n = 23) and in individuals without dysphoria (n = 24). In the whole group, the processing of pleasant and unpleasant compared to neutral pictures was associated with a decrease in event-related alpha power (i.e., alpha desynchronization) at centro-parietal and parietal scalp sites in the 538–1400 ms post-stimulus. The group with dysphoria revealed a smaller alpha desynchronization than the group without dysphoria in response to pleasant, but not neutral and unpleasant, stimuli at frontal, fronto-central and centro-parietal sites. Interestingly, at central and centro-parietal scalp sites, the difference between groups in response to pleasant stimuli was lateralized to the right hemisphere, whereas no clear lateralization was observed at frontal and fronto-central scalp sites. These findings suggest that decreased cortical activity (i.e., reduced alpha desynchronization) in a network involving bilateral frontal and right-lateralized parietal regions may provide a specific measure of deficits in approach-related motivation in depression.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Victor Oswald ◽  
Younes Zerouali ◽  
Aubrée Boulet-Craig ◽  
Maja Krajinovic ◽  
Caroline Laverdière ◽  
...  

AbstractVerbal fluency (VF) is a heterogeneous cognitive function that requires executive as well as language abilities. The purpose of this study was to elucidate the specificity of the resting state MEG correlates of the executive and language components. To this end, we administered a VF test, another verbal test (Vocabulary), and another executive test (Trail Making Test), and we recorded 5-min eyes-open resting-state MEG data in 28 healthy participants. We used source-reconstructed spectral power estimates to compute correlation/anticorrelation MEG clusters with the performance at each test, as well as with the advantage in performance between tests, across individuals using cluster-level statistics in the standard frequency bands. By obtaining conjunction clusters between verbal fluency scores and factor loading obtained for verbal fluency and each of the two other tests, we showed a core of slow clusters (delta to beta) localized in the right hemisphere, in adjacent parts of the premotor, pre-central and post-central cortex in the mid-lateral regions related to executive monitoring. We also found slow parietal clusters bilaterally and a cluster in the gamma 2 and 3 bands in the left inferior frontal gyrus likely associated with phonological processing involved in verbal fluency.


2018 ◽  
Vol 30 (1) ◽  
pp. 107-118 ◽  
Author(s):  
Johanna Wagner ◽  
Jan R. Wessel ◽  
Ayda Ghahremani ◽  
Adam R. Aron

Many studies have examined the rapid stopping of action as a proxy of human self-control. Several methods have shown that a critical focus for stopping is the right inferior frontal cortex. Moreover, electrocorticography studies have shown beta band power increases in the right inferior frontal cortex and in the BG for successful versus failed stop trials, before the time of stopping elapses, perhaps underpinning a prefrontal–BG network for inhibitory control. Here, we tested whether the same signature might be visible in scalp electroencephalography (EEG)—which would open important avenues for using this signature in studies of the recruitment and timing of prefrontal inhibitory control. We used independent component analysis and time–frequency approaches to analyze EEG from three different cohorts of healthy young volunteers (48 participants in total) performing versions of the standard stop signal task. We identified a spectral power increase in the band 13–20 Hz that occurs after the stop signal, but before the time of stopping elapses, with a right frontal topography in the EEG. This right frontal beta band increase was significantly larger for successful compared with failed stops in two of the three studies. We also tested the hypothesis that unexpected events recruit the same frontal system for stopping. Indeed, we show that the stopping-related right-lateralized frontal beta signature was also active after unexpected events (and we accordingly provide data and scripts for the method). These results validate a right frontal beta signature in the EEG as a temporally precise and functionally significant neural marker of the response inhibition process.


2005 ◽  
Vol 17 (2) ◽  
pp. 340-354 ◽  
Author(s):  
Sabira K. Mannan ◽  
Dominic J. Mort ◽  
Tim L. Hodgson ◽  
Jon Driver ◽  
Christopher Kennard ◽  
...  

Right-hemisphere patients with left neglect often demonstrate abnormal visual search, re-examining stimuli to the right while ignoring those to the left. But re-fixations alone do not reveal if patients misjudge whether they have searched a location before. Here, we not only tracked the eye movements of 16 neglect patients during search, but also asked them to click a response button only when they judged they were fixating a target for the very first time. “Re-clicking” on previously found targets would indicate that patients erroneously respond to these as new discoveries. Lesions were mapped with high-resolution MRI. Neglect patients with damage involving the right intraparietal sulcus or right inferior frontal lobe “re-clicked” on previously found targets on the right at a pathological rate, whereas those with medial occipito-temporal lesions did not. For the intraparietal sulcus patients, the probability of erroneous re-clicks on an old target increased with time since first discovering it; whereas for frontal patients it was independent of search time, suggesting different underlying mechanisms in these two types of patient. Re-click deficits correlated with degree of leftward neglect, mainly due to both being severe in intraparietal cases. These results demonstrate that misjudging previously searched locations for new ones can contribute to pathological search in neglect, with potentially different mechanisms being involved in intraparietal versus inferior frontal patients. When combined with a spatial bias to the right, such deficits might explain why many neglect patients often re-examine rightward locations, at the expense of items to their left.


Sign in / Sign up

Export Citation Format

Share Document