scholarly journals Rubicon-regulated beta-1 adrenergic receptor recycling protects the heart from pressure overload

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Yasuhiro Akazawa ◽  
Manabu Taneike ◽  
Hiromichi Ueda ◽  
Rika Kitazume-Taneike ◽  
Tomokazu Murakawa ◽  
...  

AbstractHeart failure has high morbidity and mortality in the developed countries. Autophagy is important for the quality control of proteins and organelles in the heart. Rubicon (Run domain Beclin-1-interacting and cysteine-rich domain-containing protein) has been identified as a potent negative regulator of autophagy and endolysosomal trafficking. The aim of this study was to investigate the in vivo role of Rubicon-mediated autophagy and endosomal trafficking in the heart. We generated cardiomyocyte-specific Rubicon-deficient mice and subjected the mice to pressure overload by means of transverse aortic constriction. Rubicon-deficient mice showed heart failure with left ventricular dilatation, systolic dysfunction and lung congestion one week after pressure overload. While autophagic activity was unchanged, the protein amount of beta-1 adrenergic receptor was decreased in the pressure-overloaded Rubicon-deficient hearts. The increases in heart rate and systolic function by beta-1 adrenergic stimulation were significantly attenuated in pressure-overloaded Rubicon-deficient hearts. In isolated rat neonatal cardiomyocytes, the downregulation of the receptor by beta-1 adrenergic agonist was accelerated by knockdown of Rubicon through the inhibition of recycling of the receptor. Taken together, Rubicon protects the heart from pressure overload. Rubicon maintains the intracellular recycling of beta-1 adrenergic receptor, which might contribute to its cardioprotective effect.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
C Borrelli ◽  
P Sciarrone ◽  
F Gentile ◽  
N Ghionzoli ◽  
G Mirizzi ◽  
...  

Abstract Background Central apneas (CA) and obstructive apneas (OA) are highly prevalent in heart failure (HF) both with reduced and preserved systolic function. However, a comprehensive evaluation of apnea prevalence across HF according to ejection fraction (i.e HF with patients with reduced, mid-range and preserved ejection fraction- HFrEf, HFmrEF and HFpEF, respectively) throughout the 24 hours has never been done before. Materials and methods 700 HF patients were prospectively enrolled and then divided according to left ventricular EF (408 HFrEF, 117 HFmrEF, 175 HFpEF). All patients underwent a thorough evaluation including: 2D echocardiography; 24-h Holter-ECG monitoring; cardiopulmonary exercise testing; neuro-hormonal assessment and 24-h cardiorespiratory monitoring. Results In the whole population, prevalence of normal breathing (NB), CA and OA at daytime was 40%, 51%, and 9%, respectively, while at nighttime 15%, 55%, and 30%, respectively. When stratified according to left ventricular EF, CA prevalence decreased from HFrEF to HFmrEF and HFpEF: (daytime CA: 57% vs. 43% vs. 42%, respectively, p=0.001; nighttime CA: 66% vs. 48% vs. 34%, respectively, p<0.0001), while OA prevalence increased (daytime OA: 5% vs. 8% vs. 18%, respectively, p<0.0001; nighttime OA: 20 vs. 29 vs. 53%, respectively, p<0.0001). When assessing moderte-severe apneas, defined with an apnea/hypopnea index >15 events/hour, prevalence of CA was again higher in HFrEF than HFmrEF and HFpEF both at daytime (daytime moderate-severe CA: 28% vs. 19% and 23%, respectively, p<0.05) and at nighttime (nighttime moderate-severe CA: 50% vs. 39% and 28%, respectively, p<0.05). Conversely, moderate-severe OA decreased from HFrEF to HFmrEF to HFpEF both at daytime (daytime moderate-severe OA: 1% vs. 3% and 8%, respectively, p<0.05) and nighttime (noghttime moderate-severe OA: 10% vs. 11% and 30%, respectively, p<0.05). Conclusions Daytime and nighttime apneas, both central and obstructive in nature, are highly prevalent in HF regardless of EF. Across the whole spectrum of HF, CA prevalence increases and OA decreases as left ventricular systolic dysfunction progresses, both during daytime and nighttime. Funding Acknowledgement Type of funding source: None


Circulation ◽  
2020 ◽  
Vol 142 (Suppl_3) ◽  
Author(s):  
Mihály Ruppert ◽  
Christian Karime ◽  
Alex A Sayour ◽  
Attila Oláh ◽  
Dávid Nagy ◽  
...  

Introduction: Both sustained left ventricular (LV) pressure overload (PO) and volume overload (VO) induces LV remodeling and eventually development of heart failure (HF). Using rat models, the present study aimed to provide a detailed comparison of distinct aspects of LV function in PO- and VO-induced HF. Methods: PO and VO was induced by transverse aortic constriction (TAC, n=12) and aortocaval shunt (AV-shunt, n=12) creation respectively. Controls underwent corresponding sham operations (n=11). LV remodeling was characterized by echocardiography, histology, qRT PCR, and western blot. LV function was assessed by invasive pressure-volume (P-V) analysis. Results: Both sustained PO and VO resulted in the development of HF, as evidenced by increased LV BNP mRNA expression, pulmonary edema, and characteristic symptoms. While the extent of LV hypertrophy was comparable between the HF models, PO induced concentric while VO evoked eccentric LV remodeling. P-V analysis revealed impaired systolic function in both HF models. Accordingly, decreased ejection fraction and impaired ventriculo-arterial coupling (calculated as the ratio of arterial elastance/LV contractility [VAC]: 0.38±0.05 vs. 1.30±0.13, ShamTAC vs. TAC and 0.52±0.08 vs. 1.17±0.13, ShamAV-Shunt vs. AV-shunt; p<0.05) was detected in both HF models. However, in case of VO the severely reduced LV contractility (slope of end-systolic P-V relationship: 1.79±0.19 vs. 0.52±0.06, ShamAV-Shunt vs. AV-shunt, p<0.05 and 2.14±0.28 vs. 2.03±0.21, ShamTAC vs. TAC p>0.05) underpinned the contractility-afterload mismatch, while in case of PO the increased afterload (arterial elastance: 0.77±0.07 vs. 2.64±0.28, ShamTAC vs. TAC and 0.80±0.07 vs. 0.54±0.05, ShamAV-Shunt vs. AV-shunt; p<0.05) was the main determinant. Furthermore, prolongation of active relaxation occurred to a greater extent in case of PO. In addition, increased myocardial stiffness was only observed in PO-induced HF. Conclusion: Systolic function was reduced in both HF models. However, different factors underpinned the impaired VAC in case of VO (reduced LV contractility) and PO (increased arterial elastance). Furthermore, although diastolic function deteriorated in both models, it occurred to a greater extent in case of PO.


Planta Medica ◽  
2020 ◽  
Vol 86 (17) ◽  
pp. 1304-1312
Author(s):  
Nurmila Sari ◽  
Yasufumi Katanasaka ◽  
Hiroki Honda ◽  
Yusuke Miyazaki ◽  
Yoichi Sunagawa ◽  
...  

AbstractPathological stresses such as pressure overload and myocardial infarction induce cardiac hypertrophy, which increases the risk of heart failure. Cacao bean polyphenols have recently gained considerable attention for their beneficial effects on cardiovascular diseases. This study investigated the effect of cacao bean polyphenols on the development of cardiac hypertrophy and heart failure. Cardiomyocytes from neonatal rats were pre-treated with cacao bean polyphenols and then stimulated with 30 µM phenylephrine. C57BL/6j male mice were subjected to sham or transverse aortic constriction surgery and then orally administered with vehicle or cacao bean polyphenols. Cardiac hypertrophy and function were examined by echocardiography. In cardiomyocytes, cacao bean polyphenols significantly suppressed phenylephrine-induced cardiomyocyte hypertrophy and hypertrophic gene transcription. Extracellular signal-regulated kinase 1/2 and GATA binding protein 4 phosphorylation induced by phenylephrine was inhibited by cacao bean polyphenols treatment in the cardiomyocytes. Cacao bean polyphenols treatment at 1200 mg/kg significantly ameliorated left ventricular posterior wall thickness, fractional shortening, hypertrophic gene transcription, cardiac hypertrophy, cardiac fibrosis, and extracellular signal-regulated kinase 1/2 phosphorylation induced by pressure overload. In conclusion, these findings suggest that cacao bean polyphenols prevent pressure overload-induced cardiac hypertrophy and systolic dysfunction by inhibiting the extracellular signal-regulated kinase 1/2-GATA binding protein 4 pathway in cardiomyocytes. Thus, cacao bean polyphenols may be useful for heart failure therapy in humans.


2001 ◽  
Vol 102 (1) ◽  
pp. 9-14 ◽  
Author(s):  
Suneel TALWAR ◽  
Iain B. SQUIRE ◽  
Russell J. O'BRIEN ◽  
Paul F. DOWNIE ◽  
Joan E. DAVIES ◽  
...  

The glycoprotein 130 (gp130) signalling pathway is important in the development of heart failure. Cardiotrophin-1 (CT-1), a cytokine acting via the gp130 pathway, is involved in the process of ventricular remodelling following acute myocardial infarction (AMI) in animals. The aims of the present study were to examine the profile of plasma CT-1 following AMI in humans, and its relationship with echocardiographic parameters of left ventricular (LV) systolic function. Serial measurements of plasma CT-1 levels were made in 60 patients at 14-48h, 49-72h, 73-120h and 121-192h following AMI and at a later clinic visit. LV function was assessed using a LV wall motion index (WMI) score on admission (WMI-1) and at the clinic visit (WMI-2). Compared with values in control subjects (29.5±3.6fmol/ml), the plasma CT-1 concentration was elevated in AMI patients at 14-48h (108.1±15.1fmol/ml), 49-72h (105.2±19.7fmol/ml), 73-120h (91.2±14.9fmol/ml) and 121-192h (118.8±22.6fmol/ml), and at the clinic visit (174.9±30.9 fmol/ml) (P < 0.0001). Levels were higher following anterior compared with inferior AMI. For patients with anterior AMI, CT-1 levels were higher at the clinic visit than at earlier times. WMI-1 correlated with CT-1 at all times prior to hospital discharge (P < 0.05). On best subsets analysis, the strongest correlate with WMI-1 was CT-1 level at 49-72h (R2 = 20%, P < 0.05). In conclusion, plasma levels of CT-1 are elevated soon after AMI in humans and rise further in the subsequent weeks in patients after anterior infarction. CT-1 measured soon after AMI is indicative of LV dysfunction, and this cytokine may have a role in the development of ventricular remodelling and heart failure after AMI.


2019 ◽  
Vol 40 (Supplement_1) ◽  
Author(s):  
A C Mbakwem ◽  
J Bauersachs ◽  
C Viljoen ◽  
P Van Der Meer ◽  
M Petrie ◽  
...  

Abstract Background Cardiac disease remains an important cause of maternal morbidity and mortality globally. Peripartum cardiomyopathy (PPCM), defined as heart failure secondary to left ventricular (LV) systolic dysfunction in previously healthy women towards the end of pregnancy or up to five months following delivery, can result in cardiogenic shock due to severe LV dysfunction or arrhythmias leading to sudden cardiac death. Cardiac electrical activity and its relationship to cardiac dysfunction have not yet been interrogated in large multi-centre studies. Purpose This study aimed to identify the ECG abnormalities associated with PPCM; their relationship with echocardiographic structural and functional abnormalities and explore regional and ethnic differences in ECG features. Methods We included the first 411 patients enrolled into the EURObservational PPCM registry (EORP). Baseline demographic, clinical and echocardiographic data were collected. ECGs were analysed for rate; rhythm; QRS width, axis and morphology; and QTc interval. Results Mean age of the women (from >40 countries) was 30.7±6.4 years. More than two thirds of patients presented with NYHA class III or IV (with no regional differences). The median QRS rate was 102bpm (IQR 87–117). More than half presented with sinus tachycardia (QRS rate >100bpm), whereas atrial fibrillation was rare (2.27%). The mean QRS width was 90.1ms ±21.5, with regional differences (ESC 93.8ms ±21.7 vs. non-ESC 86.8ms ±20.8, P<0.001). Left bundle branch block (LBBB) was reported in 9.30% with no regional or ethnic differences. Left ventricular hypertrophy (LVH) was present in a quarter of the cohort, and more prevalent amongst African (59.62%) and Asian (23.17%) than Caucasians (7.63%, P<0.001). The median QTc by Bazett was 456.7ms (IQR 409–490.7) and almost half (47.11%) had prolonged QTc (>460ms). The median LVEDD was 60mm (IQR 55–65) on echocardiography. Compared with their Asian and Caucasian counterparts, African patients were more likely to have LV dilatation (LVEDD>53mm: 70.11%, 79.31% and 89.42% respectively; P=0.004). The median LV ejection fraction (LVEF) was 32.50% (IQR 25–39) with no significant regional or ethnic differences. Sinus tachycardia predicted poor systolic function (OR 1.85 [95% CI 1.20–2.85], p=0.006). LVEF <35% was associated with a significantly higher QRS rate (median rate 107 vs. 98bpm, p=0.002). Women with LVEDD ≥53mm had a longer mean QRS duration (92.0±22.4 vs. 82.4±15.4ms, p<0.001) and frequency of LBBB (11.15% vs 1.54%, p=0.016). LBBB was a predictor of LVEDD >53mm (sensitivity 11.15%; specificity 98.46%; PPV 97.14%; NPV 19.10%; OR 8.02 [95% CI 1.08–59.66], p=0.042). Conclusion Patients with PPCM commonly present with sinus tachycardia, LVH, and/or prolonged QTc interval on their ECG. Wide QRS and/or LBBB, were associated with LVEDD>53mm. Sinus tachycardia, however, was associated with LVEF<35%. Risk of arrhythmia in those with prolonged QTc remains to be ascertained. Acknowledgement/Funding Heart Failure Association of the ESC


Circulation ◽  
2020 ◽  
Vol 141 (3) ◽  
pp. 199-216 ◽  
Author(s):  
Fiona Bartoli ◽  
Marc A. Bailey ◽  
Baptiste Rode ◽  
Philippe Mateo ◽  
Fabrice Antigny ◽  
...  

Background: Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca 2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. Methods: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1 R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. Results: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn 2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca 2+ signaling alterations (increased SOCE, decreased [Ca 2+ ] i transients amplitude and decay rate, lower SR Ca 2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. Conclusions: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.


2017 ◽  
Vol 39 (20) ◽  
pp. 1794-1798 ◽  
Author(s):  
Mattia Arrigo ◽  
Nicolas Vodovar ◽  
Hélène Nougué ◽  
Malha Sadoune ◽  
Chris J Pemberton ◽  
...  

Abstract Aims Heart failure (HF) is accompanied by major neuroendocrine changes including the activation of the natriuretic peptide (NP) pathway. Using the unique model of patients undergoing implantation of the CARMAT total artificial heart and investigating regional differences in soluble neprilysin (sNEP) in patients with reduced or preserved systolic function, we studied the regulation of the NP pathway in HF. Methods and results Venous blood samples from two patients undergoing replacement of the failing ventricles with a total artificial heart were collected before implantation and weekly thereafter until post-operative week 6. The ventricular removal was associated with an immediate drop in circulating NPs, a nearly total disappearance of circulating glycosylated proBNP and furin activity and a marked decrease in sNEP. From post-operative week 1 onwards, NP concentrations remained overall unchanged. In contrast, partial recoveries in glycosylated proBNP, furin activity, and sNEP were observed. Furthermore, while in patients with preserved systolic function (n = 6), sNEP concentrations in the coronary sinus and systemic vessels were similar (all P > 0.05), in patients with reduced left-ventricular systolic function, sNEP concentration, and activity were ∼three-fold higher in coronary sinus compared to systemic vessels (n = 21, all P < 0.0001), while the trans-pulmonary gradient was neutral (n = 5, P = 1.0). Conclusion The heart plays a pivotal role as a regulator of the endocrine response in systolic dysfunction, not only by directly releasing NPs but also by contributing to circulating sNEP, which in turn determines the bioavailability of other numerous vasoactive peptides.


2014 ◽  
Vol 307 (2) ◽  
pp. H252-H258 ◽  
Author(s):  
Kimberly M. Demos-Davies ◽  
Bradley S. Ferguson ◽  
Maria A. Cavasin ◽  
Jennifer H. Mahaffey ◽  
Sarah M. Williams ◽  
...  

Little is known about the function of the cytoplasmic histone deacetylase HDAC6 in striated muscle. Here, we addressed the role of HDAC6 in cardiac and skeletal muscle remodeling induced by the peptide hormone angiotensin II (ANG II), which plays a central role in blood pressure control, heart failure, and associated skeletal muscle wasting. Comparable with wild-type (WT) mice, HDAC6 null mice developed cardiac hypertrophy and fibrosis in response to ANG II. However, whereas WT mice developed systolic dysfunction upon treatment with ANG II, cardiac function was maintained in HDAC6 null mice treated with ANG II for up to 8 wk. The cardioprotective effect of HDAC6 deletion was mimicked in WT mice treated with the small molecule HDAC6 inhibitor tubastatin A. HDAC6 null mice also exhibited improved left ventricular function in the setting of pressure overload mediated by transverse aortic constriction. HDAC6 inhibition appeared to preserve systolic function, in part, by enhancing cooperativity of myofibrillar force generation. Finally, we show that HDAC6 null mice are resistant to skeletal muscle wasting mediated by chronic ANG-II signaling. These findings define novel roles for HDAC6 in striated muscle and suggest potential for HDAC6-selective inhibitors for the treatment of cardiac dysfunction and muscle wasting in patients with heart failure.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Piercarlo Ballo ◽  
Irene Betti ◽  
Giuseppe Mangialavori ◽  
Leandro Chiodi ◽  
Gherardo Rapisardi ◽  
...  

Management of patients with peripartum cardiomyopathy (PPCM) is still a major clinical problem, as only half of them or slightly more show complete recovery of left ventricular (LV) function despite conventional evidence-based treatment for heart failure. Recent observations suggested that bromocriptine might favor recovery of LV systolic function in patients with PPCM. However, no evidence exists regarding its effect on LV diastolic dysfunction, which is commonly observed in these patients. Tissue Doppler (TD) is an echocardiographic technique that provides unique information on LV diastolic performance. We report the case of a 37-year-old white woman with heart failure (NYHA class II), moderate LV systolic dysfunction (ejection fraction 35%), and severe LV diastolic dysfunction secondary to PPCM, who showed no improvement after 2 weeks of treatment with ramipril, bisoprolol, and furosemide. At 6-week followup after addition of bromocriptine, despite persistence of LV systolic dysfunction, normalization of LV diastolic function was shown by TD, together with improvement in functional status (NYHA I). At 18-month followup, the improvement in LV diastolic function was maintained, and normalization of systolic function was observed. This paper might support the clinical utility of bromocriptine in patients with PPCM by suggesting a potential benefit on LV diastolic dysfunction.


2009 ◽  
Vol 150 (45) ◽  
pp. 2060-2067 ◽  
Author(s):  
András Nagy ◽  
Zsuzsanna Cserép

Diabetes mellitus, a disease that has been reaching epidemic proportions, is an important risk factor to the development of cardiovascular complication. The left ventricular diastolic dysfunction represents the earliest pre-clinical manifestation of diabetic cardiomyopathy, preceding systolic dysfunction and being able to evolve to symptomatic heart failure. In early stages, these changes appear reversible with tight metabolic control, but as pathologic processes become organized, the changes are irreversible and contribute to an excess risk of heart failure among diabetic patients. Doppler echocardiography provides reliable data in the stages of diastolic function, as well as for systolic function. Combination of pulsed tissue Doppler study of mitral annulus with transmitral inflow may be clinically valuable for obtaining information about left ventricular filling pressure and unmasking Doppler inflow pseudonormal pattern, a hinge point for the progression toward advanced heart failure. Subsequently we give an overview about diabetes and its complications, their clinical relevance and the role of echocardiography in detection of diastolic heart failure in diabetes.


Sign in / Sign up

Export Citation Format

Share Document