scholarly journals 3-D twelve-port multi-service diversity antenna for automotive communications

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Lekha Kannappan ◽  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Preetam Kumar ◽  
M. Gulam Nabi Alsath ◽  
...  

AbstractThis paper presents a twelve-port ultra-wideband multiple-input-multiple-output (MIMO)/diversity antenna integrated with GSM and Bluetooth bands. The twelve-port antenna is constructed by arranging four elements in the horizontal plane and eight elements in the vertical plane. The antenna element, which is created using a simple rectangular monopole, exhibits a frequency range of 3.1 to 12 GHz. The additional Bluetooth and GSM bands are achieved by introducing stubs into the ground plane. The size of the MIMO antenna is 100 × 100 mm2. The antenna offers polarization diversity, with vertical and horizontal polarization in each plane. The diversity antenna has a bandwidth of 1.7–1.9 GHz, 2.35–2.55 GHz, and 3–12 GHz, the radiation efficiency of 90%, and peak gain of 2.19 dBi. The proposed antenna offers an envelope correlation coefficient of < 0.12, apparent diversity gain of > 9.9 dB, effective diversity gain of > 8.9 dB, mean effective gain of < 1 dB, and channel capacity loss of < 0.35 bits/s/Hz. Also, the MIMO antenna is tested for housing effects in order to determine its suitability for automotive applications.

2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


Author(s):  
M. Saravanan ◽  
R. Kalidoss ◽  
B. Partibane ◽  
K. S. Vishvaksenan

Abstract The design, analysis, fabrication, and testing of a four-port multiple-input multiple-output (MIMO) antenna is reported in this paper for automotive communications. The MIMO antenna is constructed using the basic antenna element exploiting a slot geometry. Two such antennas are developed on the same microwave laminate to develop a two-port MIMO antenna. Two such microwave laminates are interlocked to create the four-port MIMO scheme. The most distinct feature of the proposed architecture is that the inter-port isolation is well-taken care without the need for an external decoupling unit. The four-port MIMO antenna has an overall volume of 32 × 15 × 32 mm3. The prototype MIMO antenna is fabricated and the measurements are carried out to validate the simulation results. The antenna offers ultra-wideband (UWB) characteristics covering the frequency range of 2.8–9.5 GHz. The average boresight gain of the antenna ranges from 3.2 to 5.41 dBi with the peak gain at 8 GHz. The simulated efficiency of the antenna is greater than 73% within the operating bandwidth. The MIMO parameters such as envelope correlation coefficient, diversity gain, and mean effective gain are evaluated and presented. The appropriateness of the proposed antenna for deployment in the shark fin housing of the present-day automobiles is verified using on-car performance estimation.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


Sensors ◽  
2021 ◽  
Vol 21 (24) ◽  
pp. 8238
Author(s):  
Lekha Kannappan ◽  
Sandeep Kumar Palaniswamy ◽  
Lulu Wang ◽  
Malathi Kanagasabai ◽  
Sachin Kumar ◽  
...  

A quad-element multiple-input-multiple-output (MIMO) antenna with ultra-wideband (UWB) performance is presented in this paper. The MIMO antenna consists of four orthogonally arranged microstrip line-fed hexagonal monopole radiators and a modified ground plane. In addition, E-shaped and G-shaped stubs are added to the radiator to achieve additional resonances at 1.5 GHz and 2.45 GHz. The reliability of the antenna in the automotive environment is investigated, with housing effects taken into account. The housing effects show that the antenna performs consistently even in the presence of a large metal object. The proposed MIMO antenna has potential for various automotive applications, including vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I), vehicle-to-everything (V2X), intelligent transport system (ITS), automatic vehicle identifier, and RFID-based electronic toll collection.


Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Adam R. H. Alhawari ◽  
Tale Saeidi ◽  
Abdulkarem Hussein Mohammed Almawgani ◽  
Ayman Taher Hindi ◽  
Hisham Alghamdi ◽  
...  

A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8–31 GHz) and vertically polarized (7.6–37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7–3.85 GHz and 5–40 GHz are achieved. Low mutual coupling of less than −22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with = 1.4 and h= 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna’s characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Mohammad Ahmad Salamin ◽  
Niamat Hussain

Abstract In this work, a unique wideband multiple-input multiple-output (MIMO) antenna for fifth-generation (5G) applications is introduced. Each antenna element in the MIMO system is formed using a modified parasitic ring. To improve the performance of the antenna, a rectangular-shaped region is etched into the opposite side of each element in the ground plane. The proposed MIMO antenna is designed on a commercially available FR-4 substrate, having total dimensions of 100 × 60 × 0.8 mm3. Most interestingly, the antenna has a measured bandwidth from 2.60 to 5.97 GHz. This will effectively encompass the most predicted feasible bands for futuristic 5G communications, including 5G new radio frequency bands (N77/N78/N79) and long-term evolution (LTE) 46 band. The performance of a single antenna is evaluated in terms of S-parameters, gain, radiation patterns and efficiency. The performance of the MIMO system is also evaluated in terms of the envelope correlation coefficient (ECC) and diversity gain (DG). The designed antenna is fabricated, and the simulation results are verified practically. Good agreement is reached between simulation and measurement results. The proposed design is a good choice for 5G applications that require wideband capabilities.


2018 ◽  
Vol 10 (8) ◽  
pp. 948-955 ◽  
Author(s):  
Ling Wu ◽  
Yingqing Xia ◽  
Xia Cao ◽  
Zhengtao Xu

AbstractA simple multiple-input-multiple-output (MIMO) antenna with quad-band-notched characteristics for ultra-wideband (UWB) system is proposed and tested in the article. Based on two similar radiators, the UWB-MIMO system only occupies 22 mm × 28 mm. By etching an inverted L-like meander slot, two inverted L-shaped slots, and adding a C-shaped stub beside the feeding line, four notched bands are realized (3.25–3.6, 5.05–5.48, 5.6–6, and 7.8–8.4 GHz) to suppress interference from WiMAX, lower WLAN, upper WLAN, and uplink of X-band satellite communication system. With a T-like stub extruding from the ground plane, port isolation is effectively improved. The results show that the antenna covers 3.1–10.6 GHz UWB frequency band except four rejected bands and has high isolation of better than −20 dB over most of the frequency band. Moreover, envelope correlation coefficient and good radiation patterns also prove that the introduced antenna is suitable for UWB applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. Mchbal ◽  
N. Amar Touhami ◽  
H. Elftouh ◽  
A. Dkiouak

A compact ultra-wideband (UWB) multiple input-multiple output (MIMO) antenna with high isolation is designed for UWB applications. The proposed MIMO antenna consists of two identical monopole antenna elements. To enhance the impedance matching, three slots are formed on the ground plane. The arc structure as well as the semicircle with an open-end slot is employed on the radiating elements the fact which helps to extend the impedance bandwidth of the monopole antenna from 3.1 up to 10.6 GHz, which corresponds to the UWB band. A ground branch decoupling structure is introduced between the two elements to reduce the mutual coupling. Simulation and measurement results show a bandwidth range from 3.1 to 11.12 GHz with |S11_|<−15 dB, |S21_|<−20 dB, and ECC < 0.002.


Sensors ◽  
2020 ◽  
Vol 20 (3) ◽  
pp. 624 ◽  
Author(s):  
Pawan Kumar ◽  
Shabana Urooj ◽  
Fadwa Alrowais

A compact, low-profile, coplanar waveguide (CPW)-fed quad-port multiple-input–multiple-output (MIMO)/diversity antenna with triple band-notched (Wi-MAX, WLAN, and X-band) characteristics is proposed for super-wideband (SWB) applications. The proposed design contains four similar truncated–semi-elliptical–self-complementary (TSESC) radiating patches, which are excited through tapered CPW feed lines. A complementary slot matching the radiating patch is introduced in the ground plane of the truncated semi-elliptical antenna element to obtain SWB. The designed MIMO/diversity antenna displays a bandwidth ratio of 31:1 and impedance bandwidth (|S11| ≤ − 10 dB) of 1.3–40 GHz. In addition, a complementary split-ring resonator (CSRR) is implanted in the resonating patch to eliminate WLAN (5.5 GHz) and X-band (8.5 GHz) signals from SWB. Further, an L-shaped slit is used to remove Wi-MAX (3.5 GHz) band interferences. The MIMO antenna prototype is fabricated, and a good agreement is achieved between the simulated and experimental outcomes.


2010 ◽  
Vol 2 (3-4) ◽  
pp. 369-377 ◽  
Author(s):  
Timofey Savelyev ◽  
Xiaodong Zhuge ◽  
Bill Yang ◽  
Pascal Aubry ◽  
Alexander Yarovoy ◽  
...  

This paper presents an experimental investigation of two approaches to short-range radar imaging at microwaves by means of ultra-wideband (UWB) technology. The first approach represents a classical synthetic aperture radar (SAR) that employs a transmit–receive antenna pair on mechanical scanner. The second one makes use of a multiple input multiple output (MIMO) antenna array that scans electronically in the horizontal plane and mechanically, installed on the scanner, in the vertical plane. The mechanical scanning in only one direction reduces significantly the measurement time. Two respective prototypes have been built and compared. Both systems comprise the same 10–18 GHz antennas and multi-channel video impulse electronics while the same data processing and imaging method based on Kirchhoff migration is applied to acquired data for digital beamforming. The study has been done for an application of concealed weapon detection.


Sign in / Sign up

Export Citation Format

Share Document