scholarly journals Wearable Metamaterial Dual-Polarized High Isolation UWB MIMO Vivaldi Antenna for 5G and Satellite Communications

Micromachines ◽  
2021 ◽  
Vol 12 (12) ◽  
pp. 1559
Author(s):  
Adam R. H. Alhawari ◽  
Tale Saeidi ◽  
Abdulkarem Hussein Mohammed Almawgani ◽  
Ayman Taher Hindi ◽  
Hisham Alghamdi ◽  
...  

A low-profile Multiple Input Multiple Output (MIMO) antenna showing dual polarization, low mutual coupling, and acceptable diversity gain is presented by this paper. The antenna introduces the requirements of fifth generation (5G) and the satellite communications. A horizontally (4.8–31 GHz) and vertically polarized (7.6–37 GHz) modified antipodal Vivaldi antennas are simulated, fabricated, and integrated, and then their characteristics are examined. An ultra-wideband (UWB) at working bandwidths of 3.7–3.85 GHz and 5–40 GHz are achieved. Low mutual coupling of less than −22 dB is achieved after loading the antenna with cross-curves, staircase meander line, and integration of the metamaterial elements. The antennas are designed on a denim textile substrate with = 1.4 and h= 0.5 mm. A conductive textile called ShieldIt is utilized as conductor with conductivity of 1.8 × 104. After optimizing the proposed UWB-MIMO antenna’s characteristics, it is increased to four elements positioned at the four corners of a denim textile substrate to be employed as a UWB-MIMO antenna for handset communications, 5G, Ka and Ku band, and satellite communications (X-band). The proposed eight port UWB-MIMO antenna has a maximum gain of 10.7 dBi, 98% radiation efficiency, less than 0.01 ECC, and acceptable diversity gain. Afterwards, the eight-ports antenna performance is examined on a simulated real voxel hand and chest. Then, it is evaluated and compared on physical hand and chest of body. Evidently, the simulated and measured results show good agreement between them. The proposed UWB-MIMO antenna offers a compact and flexible design, which is suitably wearable for 5G and satellite communications applications.

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Lekha Kannappan ◽  
Sandeep Kumar Palaniswamy ◽  
Malathi Kanagasabai ◽  
Preetam Kumar ◽  
M. Gulam Nabi Alsath ◽  
...  

AbstractThis paper presents a twelve-port ultra-wideband multiple-input-multiple-output (MIMO)/diversity antenna integrated with GSM and Bluetooth bands. The twelve-port antenna is constructed by arranging four elements in the horizontal plane and eight elements in the vertical plane. The antenna element, which is created using a simple rectangular monopole, exhibits a frequency range of 3.1 to 12 GHz. The additional Bluetooth and GSM bands are achieved by introducing stubs into the ground plane. The size of the MIMO antenna is 100 × 100 mm2. The antenna offers polarization diversity, with vertical and horizontal polarization in each plane. The diversity antenna has a bandwidth of 1.7–1.9 GHz, 2.35–2.55 GHz, and 3–12 GHz, the radiation efficiency of 90%, and peak gain of 2.19 dBi. The proposed antenna offers an envelope correlation coefficient of < 0.12, apparent diversity gain of > 9.9 dB, effective diversity gain of > 8.9 dB, mean effective gain of < 1 dB, and channel capacity loss of < 0.35 bits/s/Hz. Also, the MIMO antenna is tested for housing effects in order to determine its suitability for automotive applications.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
A. Mchbal ◽  
N. Amar Touhami ◽  
H. Elftouh ◽  
A. Dkiouak

A compact ultra-wideband (UWB) multiple input-multiple output (MIMO) antenna with high isolation is designed for UWB applications. The proposed MIMO antenna consists of two identical monopole antenna elements. To enhance the impedance matching, three slots are formed on the ground plane. The arc structure as well as the semicircle with an open-end slot is employed on the radiating elements the fact which helps to extend the impedance bandwidth of the monopole antenna from 3.1 up to 10.6 GHz, which corresponds to the UWB band. A ground branch decoupling structure is introduced between the two elements to reduce the mutual coupling. Simulation and measurement results show a bandwidth range from 3.1 to 11.12 GHz with |S11_|<−15 dB, |S21_|<−20 dB, and ECC < 0.002.


Author(s):  
Chafai Abdelhamid ◽  
Hedi Sakli ◽  
Nizar Sakli

This paper proposes a method for designing a new <em>ultra wide band</em> (UWB) multiple-input multiple-output (MIMO) antenna with two and four elements. First we presented an ultra-wide band antenna we studied these performances. Then, we studied the application of metamaterials to the design of MIMO antennas for miniaturization and the performance of antennas, in order to guarantee the proper functioning of the MIMO system with a much reduced separation distance between the radiating elements (λ/12), where the coupling can be very weak. The application of these circular double ring SRRs materials on the front plan of the antenna has contributed to the increasing of the antenna performance is studied in terms of S-Parameters, efficiency, diversity gain (DG), radiation properties and envelop correlation coefficient (ECC). It offers advantages such as the reduction of weight and congestion that is beneficial for their integration into satellite communications systems.


2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Jiwan Ghimire ◽  
Kwang-Wook Choi ◽  
Dong-You Choi

The correlation between the antennas of multiple-input, multiple-output (MIMO) systems in limited spaces and size degrades the performance and capacity by either using complex coupling or decoupling structures. For isolation improvement, this paper presents the simple design of a compact high-isolation ultra-wideband (UWB) MIMO antenna with a circular parasitic element at the back side of the radiating patch, thereby creating the reverse coupling and helping reduce the mutual coupling at the upper part of the frequency bands, and a small rectangular notch at the ground plane to extend the impedance bandwidth of the monopole antenna. This approach eliminates the use of complex coupling or decoupling structures and complex feeding networks. A novel feature of our design is that the MIMO antenna exhibits a very low envelope correlation coefficient (ECC < 0.007) with high diversity gain (DG > 9.99) and wide impedance bandwidth of 139 % from 3.1 to 17.5 GHz applicable for not only UWB application, but also next generation wireless communication, 5G. The high peak gain over the entire UWB and the upper part of the overall frequency band ensure that the antenna can be used in MIMO applications owing to the close agreement between the simulated and measured results.


Electronics ◽  
2021 ◽  
Vol 10 (19) ◽  
pp. 2431
Author(s):  
Hamizan Yon ◽  
Nurul Huda Abd Rahman ◽  
Mohd Aziz Aris ◽  
Mohd Haizal Jamaluddin ◽  
Irene Kong Cheh Lin ◽  
...  

In the 5G system, multiple-input multiple-output (MIMO) antennas for both transmitting and receiving ends are required. However, the design of MIMO antennas at the 5G upper band is challenging due to the mutual coupling issues. Many techniques have been proposed to improve antenna isolation; however, some of the designs have impacts on the antenna performance, especially on the gain and bandwidth reduction, or an increase in the overall size. Thus, a design with a detailed trade-off study must be implemented. This article proposes a new C-shaped parasitic structure around a main circular radiating patch of a MIMO antenna at 16 GHz with enhanced isolation features. The proposed antenna comprises two elements with a separation of 0.32λ edge to edge between radiation parts placed in a linear configuration with an overall dimension of 15 mm × 26 mm. The C-shaped parasitic element was introduced around the main radiating antenna for better isolation. Based on the measurement results, the proposed structure significantly improved the isolation from −23.86 dB to −32.32 dB and increased the bandwidth from 1150 MHz to 1400 MHz. For validation, the envelope correlation coefficient (ECC) and the diversity gain (DG) were also measuredas 0.148 dB and 9.89 dB, respectively. Other parameters, such as the radiation pattern, the total average reflection coefficient and the mean effective gain, were also calculated to ensure the validity of the proposed structure. Based on the design work and analysis, the proposed structure was proven to improve the antenna isolation and increase the bandwidth, while maintaining the small overall dimension.


2017 ◽  
Vol 10 (3) ◽  
pp. 360-367 ◽  
Author(s):  
Sonika Priyadarsini Biswal ◽  
Sushrut Das

A compact printed quadrant shaped monopole antenna is introduced in this paper as a good prospect for ultra wideband- multiple-input multiple-output (UWB-MIMO) system. The proposed MIMO antenna comprises two perpendicularly oriented monopoles to employ polarization diversity. An open circuit folded stub is extended from the ground plane of each radiating element to enhance the impedance bandwidth satisfying the UWB criteria. Two ‘L’ shaped slots are further etched on the radiator to provide good isolation performance between two radiators. The desirable radiator performances and diversity performances are ensured by simulation and/or measurement of the reflection coefficient, radiation pattern, realized peak gain, envelope correlation coefficient (ECC), diversity gain, mean effective gain (MEG) ratio and channel capacity loss (CCL). Results indicate that the proposed antenna exhibits 2.9–11 GHz 10 dB return loss bandwidth, mutual coupling <−20 dB, ECC < 0.003, MEG ratio ≈ 1, and CCL < 0.038 Bpsec/Hz, making it a good candidate for UWB and MIMO diversity application.


Author(s):  
M. Saravanan ◽  
R. Kalidoss ◽  
B. Partibane ◽  
K. S. Vishvaksenan

Abstract The design, analysis, fabrication, and testing of a four-port multiple-input multiple-output (MIMO) antenna is reported in this paper for automotive communications. The MIMO antenna is constructed using the basic antenna element exploiting a slot geometry. Two such antennas are developed on the same microwave laminate to develop a two-port MIMO antenna. Two such microwave laminates are interlocked to create the four-port MIMO scheme. The most distinct feature of the proposed architecture is that the inter-port isolation is well-taken care without the need for an external decoupling unit. The four-port MIMO antenna has an overall volume of 32 × 15 × 32 mm3. The prototype MIMO antenna is fabricated and the measurements are carried out to validate the simulation results. The antenna offers ultra-wideband (UWB) characteristics covering the frequency range of 2.8–9.5 GHz. The average boresight gain of the antenna ranges from 3.2 to 5.41 dBi with the peak gain at 8 GHz. The simulated efficiency of the antenna is greater than 73% within the operating bandwidth. The MIMO parameters such as envelope correlation coefficient, diversity gain, and mean effective gain are evaluated and presented. The appropriateness of the proposed antenna for deployment in the shark fin housing of the present-day automobiles is verified using on-car performance estimation.


2019 ◽  
Vol 8 (1) ◽  
pp. 75-81
Author(s):  
N. Al Shalaby ◽  
S. G. El-Sherbiny

In this paper, A multiple input Multiple Output (MIMO) antenna using two Square Dielectric Resonators (SDRs) is introduced. The mutual coupling between the two SDRAs is reduced using two different methods; the first method is based on splitting a spiral slot in the ground plane, then filling the slot with dielectric material, "E.=2.2". The second method is based on inserting a copper parasitic element, having the same shape of the splitted Spiral, between the two SDRAs.  The effect of replacing the copper parasitic element with Carbon nanotubes (CNTs) parasitic element "SOC12 doped long-MWCNT BP" is also studied. The antenna system is designed to operate at 6 GHz. The analysis and simulations are carried out using finite element method (FEM). The defected ground plane method gives a maximum isolation of l8dB at element spacing of 30mm (0.6λo), whereas the parasitic element method gives a maximum isolation of 42.5dB at the same element spacing.


2015 ◽  
Vol 6 (3) ◽  
pp. 1-15 ◽  
Author(s):  
Wan Noor Najwa Wan Marzudi ◽  
Zuhairiah Zainal Abidin ◽  
Siti Zarina Mohd Muji ◽  
Yue Ma ◽  
Raed A. Abd-Alhameed

This paper presented a planar printed multiple-input-multiple-output (MIMO) antenna with a dimension of 100 x 45 mm2. It composed of two crescent shaped radiators placed symmetrically with respect to the ground plane. Neutralization line applied to suppress mutual coupling. The proposed antenna examined both theoretically and experimentally, which achieves an impedance bandwidth of 18.67% (over 2.04-2.46 GHz) with a reflection coefficient < -10 dB and mutual coupling minimization of < -20 dB. An evaluation of MIMO antennas is presented, with analysis of correlation coefficient, total active reflection coefficient (TARC), capacity loss and channel capacity. These characteristics indicate that the proposed antenna suitable for some wireless applications.


2019 ◽  
Vol 57 (2) ◽  
pp. 223
Author(s):  
Hoa Nguyen Thi Quynh ◽  
Sy Tuan Tran ◽  
Huu Lam Phan ◽  
Duy Tung Phan

A compact three-port metamaterial multiple-input-multiple-output (MIMO) antenna using complementary split-ring resonator (CSRR) loaded ground have demonstrated in order to miniaturize the size and improve the antenna performance. The antenna is designed on FR4 material and simulated by HFSS software. By loading CSRRs in the ground plane, the size reduction of 77% of the individual patch antenna element is achieved, which appeared to be the major reason for the obtained the compact MIMO antenna. Furthermore, the simulated results show that the proposed MIMO antenna achieves the total gain higher than 5 dB, the isolation less than -11 dB, the envelope correlation coefficient (ECC) value lower than 0.015, and the bandwidth of 100 MHz through the whole WLAN band from 2.4 GHz to 2.484 GHz, indicating promises for WLAN applications.


Sign in / Sign up

Export Citation Format

Share Document