scholarly journals Dual-functional quantum-dots light emitting diodes based on solution processable vanadium oxide hole injection layer

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tae Yeon Kim ◽  
Sungho Park ◽  
Byung Jun Kim ◽  
Su Been Heo ◽  
Jong Hun Yu ◽  
...  

AbstractDual-functional quantum-dots light emitting diodes (QLEDs) have been fabricated using solution processable vanadium oxide (V2O5) hole injection layer to control the carrier transport behavior. The device shows selectable functionalities of photo-detecting and light-emitting behaviors according to the different operating voltage conditions. The device emitted a bright green light at the wavelength of 536 nm, and with the maximum luminance of 31,668 cd/m2 in a forward bias of 8.6 V. Meanwhile, the device could operate as a photodetector in a reverse bias condition. The device was perfectly turned off in a reverse bias, while an increase of photocurrent was observed during the illumination of 520 nm wavelength light on the device. The interfacial electronic structure of the device prepared with different concentration V2O5 solution was measured in detail using x-ray and ultraviolet photoelectron spectroscopy. Both the highest occupied molecular orbital and the gap state levels were moved closer to the Fermi level, according to increase the concentration of V2O5 solution. The change of gap state position enables to fabricate a dual-functional QLEDs. Therefore, the device could operate both as a photodetector and as a light-emitting diode with different applied bias. The result suggests that QLEDs can be used as a photosensor and as a light-emitting diode for the future display industry.

2021 ◽  
Vol 9 ◽  
Author(s):  
Wenqing Zhu ◽  
Kuangyu Ding ◽  
Chen Yi ◽  
Ruilin Chen ◽  
Bin Wei ◽  
...  

In this study, we have synthesized the molybdenum sulfide quantum dots (MoS2 QDs) and zinc sulfide quantum dots (ZnS QDs) and demonstrated a highly efficient green phosphorescent organic light-emitting diode (OLED) with hybrid poly (3,4-ethylenedioxythiophene)/poly (styrenesulfonate) (PEDOT:PSS)/QDs hole injection layer (HIL). The electroluminescent properties of PEDOT:PSS and hybrid HIL based devices were explored. An optimized OLED based on the PEDOT:PSS/MoS2 QDs HIL exhibited maximum current efficiency (CE) of 72.7 cd A−1, which shows a 28.2% enhancement as compared to counterpart with single PEDOT:PSS HIL. The higher device performance of OLED with hybrid HIL can be attributed to the enhanced hole injection capacity and balanced charge carrier transportation in the OLED devices. The above analysis illustrates an alternative way to fabricate the high efficiency OLEDs with sulfide quantum dots as a HIL.


2017 ◽  
Vol 17 (4) ◽  
pp. 442-447 ◽  
Author(s):  
Sang Moo Lee ◽  
Dongguen Shin ◽  
Nam-Kwang Cho ◽  
Yeonjin Yi ◽  
Seong Jun Kang

2019 ◽  
Vol 50 (1) ◽  
pp. 1693-1695
Author(s):  
Yangbing Zhu ◽  
Hailong Hu ◽  
Jintang Lin ◽  
Fushan Li ◽  
Tailiang Guo

2021 ◽  
Vol 245 ◽  
pp. 03021
Author(s):  
Ronghong Zheng ◽  
Dong Huang ◽  
Dongyang Shen ◽  
Chengzhao Luo ◽  
Yu Chen

Perovskite quantum dots have been widely used in light-emitting diodes (LEDs) because of their adjustable color, high quantum yield and easy solution processing. Furthermore, matching energy levels of device plays a profound role in the resultant LEDs. In this study, a polymeric material, namely poly[(9,9-dioctylfluorenyl-2,7-diyl)-co-(4,4’-(N-(pbutylphenyl))diphenylamine)] (TFB), is introduced between the quantum dot emission layer and the hole injection layer PEDOT:PSS, which not only prevents the fluorescence quenching caused by the direct contact between the perovskite layer and the hole injection layer, but also reduces hole injection barrier, both being beneficial to the device performance. The optimal thickness of TFB has been obtained by adjusting the rotational speed and precursor solution concentration during spin coating. The optimized quantum dots LED has a switching on voltage of about 2.2 V, a maximum brightness of 4300 cd/m2, a maximum external quantum efficiency of 0.15%, and a maximum current density of 0.54 cd/A.


2017 ◽  
Vol 5 (4) ◽  
pp. 817-823 ◽  
Author(s):  
Heng Zhang ◽  
Siting Wang ◽  
Xiaowei Sun ◽  
Shuming Chen

Solution processed V2O5 is used as a replacement for PEDOT:PSS to improve the stability of QLEDs.


Sign in / Sign up

Export Citation Format

Share Document