scholarly journals Device simulation of highly efficient eco-friendly CH3NH3SnI3 perovskite solar cell

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Piyush K. Patel

AbstractPhotoexcited lead-free perovskite CH3NH3SnI3 based solar cell device was simulated using a solar cell capacitance simulator. It was modeled to investigate its output characteristics under AM 1.5G illumination. Simulation efforts are focused on the thickness, acceptor concentration and defect density of absorber layer on photovoltaic properties of solar cell device. In addition, the impact of various metal contact work function was also investigated. The simulation results indicate that an absorber thickness of 500 nm is appropriate for a good photovoltaic cell. Oxidation of Sn2+ into Sn4+ was considered and it is found that the reduction of acceptor concentration of absorber layer significantly improves the device performance. Further, optimizing the defect density (1014 cm−3) of the perovskite absorber layer, encouraging results of the Jsc of 40.14 mA/cm2, Voc of 0.93 V, FF of 75.78% and PCE of 28.39% were achieved. Finally, an anode material with a high work function is necessary to get the device's better performance. The high-power conversion efficiency opens a new avenue for attaining clean energy.

2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
F. X. Abomo Abega ◽  
A. Teyou Ngoupo ◽  
J. M. B. Ndjaka

Numerical modelling is used to confirm experimental and theoretical work. The aim of this work is to present how to simulate ultrathin hydrogenated amorphous silicon- (a-Si:H-) based solar cells with a ITO BRL in their architectures. The results obtained in this study come from SCAPS-1D software. In the first step, the comparison between the J-V characteristics of simulation and experiment of the ultrathin a-Si:H-based solar cell is in agreement. Secondly, to explore the impact of certain properties of the solar cell, investigations focus on the study of the influence of the intrinsic layer and the buffer layer/absorber interface on the electrical parameters ( J SC , V OC , FF, and η ). The increase of the intrinsic layer thickness improves performance, while the bulk defect density of the intrinsic layer and the surface defect density of the buffer layer/ i -(a-Si:H) interface, respectively, in the ranges [109 cm-3, 1015 cm-3] and [1010 cm-2, 5 × 10 13  cm-2], do not affect the performance of the ultrathin a-Si:H-based solar cell. Analysis also shows that with approximately 1 μm thickness of the intrinsic layer, the optimum conversion efficiency is 12.71% ( J SC = 18.95   mA · c m − 2 , V OC = 0.973   V , and FF = 68.95 % ). This work presents a contribution to improving the performance of a-Si-based solar cells.


2021 ◽  
Vol 2114 (1) ◽  
pp. 012044
Author(s):  
Mussab J. Ahmed ◽  
Ayed N. Saleh

Abstract In this research, the effect of bulk defect on the performance of the solar cell was studied by using the AFORS-HET simulation program. This was done by varying the density of defects including both Acceptor-like and donor-like within the SnS absorption layer. The thickness of the SnS layer was changed from 600nm to 9000nm with the change in bulk defect density in the same layer from (1E10 to 1E17 cm−3). The results showed that when the density of defects is less than 1E14cm−3, it has no effect on the performance of the solar cell, but its effect appears after this concentration, On the contrary, it is the effect of thickness, the results showed that the change in thickness at the defect density of E16cm−3 does not affect on the optical and electrical properties. Also, the results showed that the effect of defects is greatest at low concentrations of Na impurities, and this effect begins to decrease with increasing the concentration of impurities.


2021 ◽  
Vol 2128 (1) ◽  
pp. 012009
Author(s):  
Hassan Ismail Abdalmageed ◽  
Mostafa Fedawy ◽  
Moustafa H. Aly

Abstract This article uses computational models to evaluate the potential of copper-indium-gallium-diselenide (CIGS) thin film solar cells. The use of cadmium sulphide (CdS) renders the solar cell environmentally hazardous. A zinc sulphide (ZnS) that is non-toxic and has a large bandgap is studied as a potential replacement for cadmium sulphide in CIGS-based solar cells. The present research focuses on the impact of the CIGS-based solar cell bandgap absorber layer by increasing the absorber layer thickness (0.1-2 μm) using the solar cell simulator simulation tool SCAPS. The basic simulation produces 18.2 % efficiency with a CdS buffer layer, which is 9.95% better than the previously published work. The Simulated efficiency is 22.16% for the CIGS solar cell using ZnS. The simulation of solar cell characteristics of how the thickness of the absorber layer, the gallium grading (efficiency ranges up to 22.25 %) is demonstrated, showing the effect of buffer layer (ZnS) on the current of short-circuit density (JSC), open-circuit voltage (Voc), fill factor (FF), and efficiency (η) of the solar cell.


2021 ◽  
Vol 3 (5) ◽  
Author(s):  
Adnan Hosen ◽  
Md. Suruz Mian ◽  
Sheikh Rashel Al Ahmed

AbstractIn this study, copper bismuth oxide (CuBi2O4) absorber-based thin film heterojunction solar cell structure consisting of Al/FTO/CdS/CuBi2O4/Ni has been proposed. The proposed solar cell device structure has been modeled and analyzed by using the solar cell capacitance simulator in one dimension (SCAPS-1D) software program. The performance of the proposed photovoltaic device is evaluated numerically by varying thickness, doping concentrations, defect density, operating temperature, back metal contact work function, series and shunt resistances. The current density–voltage behaviors at dark and under illumination are investigated. To realize the high efficiency CuBi2O4-based solar cell, the thickness, acceptor and donor densities, defect densities of different layers have been optimized. The present work reveals that the power conversion efficiency can be enhanced by increasing the absorber layer thickness. The efficiency of 26.0% with open-circuit voltage of 0.97 V, short-circuit current density of 31.61 mA/cm2, and fill-factor of 84.58% is achieved for the proposed solar cell at the optimum 2.0-μm-thick CuBi2O4 absorber layer. It is suggested that the p-type CuBi2O4 material proposed in the present study can be employed as a promising absorber layer for applications in the low cost and high efficiency thin-film solar cells.


2021 ◽  
Vol 12 ◽  
pp. 3
Author(s):  
Christyves Chevallier ◽  
Sourav Bose ◽  
Sidi Ould Saad Hamady ◽  
Nicolas Fressengeas

Numerical simulations of AZO/Zn1−xGexO/Cu2O solar cell are performed in order to model for the first time the impact of the germanium composition of the ZnGeO buffer layer on the photovoltaic conversion efficiency. The physical parameters of the model are chosen with special care to match literature experimental measurements or are interpolated using the values from binary metal oxides in the case of the new Zn1−xGexO compound. The solar cell model accuracy is then confirmed thanks to the comparison of its predictions with measurements from the literature that were done on experimental devices obtained by thermal oxidation. This validation of the AZO/Zn1−xGexO/Cu2O model then allows to study the impact of the use of the low cost, environmental friendly and industrially compatible spray pyrolysis process on the solar cell efficiency. To that aim, the Cu2O absorber layer parameters are adjusted to typical values obtained by the spray pyrolysis process by selecting state of the art experimental data. The analysis of the impact of the absorber layer thickness, the carrier mobility, the defect and doping concentration on the solar cell performances allows to draw guidelines for ZnGeO/Cu2O thin film photovoltaic device realization through spray pyrolysis.


2021 ◽  
Vol 119 ◽  
pp. 111314
Author(s):  
A.S. Mathur ◽  
Sachin Upadhyay ◽  
Prem Pratap Singh ◽  
Bharti Sharma ◽  
Prateek Arora ◽  
...  

2019 ◽  
Vol 01 (02) ◽  
pp. 172-181 ◽  
Author(s):  
Ahmed Idda ◽  
Leila Ayat ◽  
said Bentouba ◽  
◽  
◽  
...  

Hydrogeneted amorphous silicon (a-Si:H) based solar cells are promising candidates for future developments in the photovoltaic industry. In fact, amorphous silicon technology offers significant advantages including low cost fabrication and possibility to deposition on flexible substrat as well as low temperature fabrication. Much progress has been made since the first single junction cell in amorphous silicon made in 1976 by Carlson and Wronski. However, the performance of the solar cells based on a-Si:H is limited by the high defect density and degradation induced by exposure to light, or Staebler-Wronski effect. To become competitive, the performance of the solar cells based on a-Si:H must be improved. In order to improve the performance of a-Si:H solar cells, much research is directed to optimization techniques. The improvement in performance is therefore based on the optimization of the different layers of the solar cell, in particular, the window layer and the absorber layer (intrinsic). The aim of this work is to give an overview on the different techniques and strategies that is used to improve the performance of solar cell. This work is therefore focus in three main areas: first, optimization of window layer, in particular, the p/i interface using wide band gap alloys such as a-SiC:H, second development of high quality absorber layer using band gap engineering, and alloys such as a-SiGe:H. last, optimizing n-type layer and i/n interface.


Sign in / Sign up

Export Citation Format

Share Document