ubiquitin system
Recently Published Documents


TOTAL DOCUMENTS

315
(FIVE YEARS 62)

H-INDEX

61
(FIVE YEARS 7)

2021 ◽  
Vol 12 ◽  
Author(s):  
Jingjing Luo ◽  
Lidong Wang ◽  
Lei Song ◽  
Zhao-Qing Luo

Ubiquitination is a commonly used post-translational modification (PTM) in eukaryotic cells, which regulates a wide variety of cellular processes, such as differentiation, apoptosis, cell cycle, and immunity. Because of its essential role in immunity, the ubiquitin network is a common target of infectious agents, which have evolved various effective strategies to hijack and co-opt ubiquitin signaling for their benefit. The intracellular pathogen Legionella pneumophila represents one such example; it utilizes a large cohort of virulence factors called effectors to modulate diverse cellular processes, resulting in the formation a compartment called the Legionella-containing vacuole (LCV) that supports its replication. Many of these effectors function to re-orchestrate ubiquitin signaling with distinct biochemical activities. In this review, we highlight recent progress in the mechanism of action of L. pneumophila effectors involved in ubiquitination and discuss their roles in bacterial virulence and host cell biology.


Author(s):  
Emma V. Rusilowicz-Jones ◽  
Ailbhe J. Brazel ◽  
Francesca Frigenti ◽  
Sylvie Urbé ◽  
Michael J. Clague
Keyword(s):  

Viruses ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2309
Author(s):  
Laurie-Anne Lamotte ◽  
Lionel Tafforeau

Ubiquitination is a post-translational modification regulating critical cellular processes such as protein degradation, trafficking and signaling pathways, including activation of the innate immune response. Therefore, viruses, and particularly influenza A virus (IAV), have evolved different mechanisms to counteract this system to perform proper infection. Among IAV proteins, the non-structural protein NS1 is shown to be one of the main virulence factors involved in these viral hijackings. NS1 is notably able to inhibit the host’s antiviral response through the perturbation of ubiquitination in different ways, as discussed in this review.


Cells ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 2706
Author(s):  
Yasuhiro Fuseya ◽  
Kazuhiro Iwai

The ubiquitin system modulates protein functions by decorating target proteins with ubiquitin chains in most cases. Several types of ubiquitin chains exist, and chain type determines the mode of regulation of conjugated proteins. LUBAC is a ubiquitin ligase complex that specifically generates N-terminally Met1-linked linear ubiquitin chains. Although linear ubiquitin chains are much less abundant than other types of ubiquitin chains, they play pivotal roles in cell survival, proliferation, the immune response, and elimination of bacteria by selective autophagy. Because linear ubiquitin chains regulate inflammatory responses by controlling the proinflammatory transcription factor NF-κB and programmed cell death (including apoptosis and necroptosis), abnormal generation of linear chains can result in pathogenesis. LUBAC consists of HOIP, HOIL-1L, and SHARPIN; HOIP is the catalytic center for linear ubiquitination. LUBAC is unique in that it contains two different ubiquitin ligases, HOIP and HOIL-1L, in the same ligase complex. Furthermore, LUBAC constitutively interacts with the deubiquitinating enzymes (DUBs) OTULIN and CYLD, which cleave linear ubiquitin chains generated by LUBAC. In this review, we summarize the current status of linear ubiquitination research, and we discuss the intricate regulation of LUBAC-mediated linear ubiquitination by coordinate function of the HOIP and HOIL-1L ligases and OTULIN. Furthermore, we discuss therapeutic approaches to targeting LUBAC-mediated linear ubiquitin chains.


2021 ◽  
Vol 22 (18) ◽  
pp. 10107
Author(s):  
Kaixin Wu ◽  
Seon-Min Woo ◽  
Seung-Un Seo ◽  
Taeg-Kyu Kwon

BMI-1, a polycomb ring finger oncogene, is highly expressed in multiple cancer cells and is involved in cancer cell proliferation, invasion, and apoptosis. BMI-1 represents a cancer stemness marker that is associated with the regulation of stem cell self-renewal. In this study, pharmacological inhibition (PTC596) or knockdown (siRNA) of BMI-1 reduced cancer stem-like cells and enhanced cancer cell death. Mechanistically, the inhibition of BMI-1 induced the downregulation of Mcl-1 protein, but not Mcl-1 mRNA. PTC596 downregulated Mcl-1 protein expression at the post-translational level through the proteasome-ubiquitin system. PTC596 and BMI-1 siRNA induced downregulation of DUB3 deubiquitinase, which was strongly linked to Mcl-1 destabilization. Furthermore, overexpression of Mcl-1 or DUB3 inhibited apoptosis by PTC596. Taken together, our findings reveal that the inhibition of BMI-1 induces Mcl-1 destabilization through downregulation of DUB3, resulting in the induction of cancer cell death.


2021 ◽  
Vol 9 ◽  
Author(s):  
Aaron Ciechanover

Proteins are the engines of all forms of life, for humans and for all the plant and animal kingdoms. Proteins are used both to build organs (such as bones, muscles, and skin) and to perform bodily functions. These functions range from digestion (processing food and converting it into energy), to enabling movement and sensation (sight and hearing), to protecting the body from foreign invaders with our antibodies, which are also proteins. What are proteins? They can be compared to words in a language that contains letters. In the Hebrew alphabet, there are 26 letters out of which countless words can be composed. But when we write, we use just a fraction of these infinite options, with the average number of letters in a word ranging between 3 and 8. The biological “protein alphabet” is comprised of 20 “letters” called amino acids, which are the building blocks of the proteins that make up the body. Proteins are chains of amino acid, linked together in a specific order governed by the DNA. Unlike the words of a spoken language, the average protein consists of hundreds of amino acids. The extensive length of proteins and the chemical composition of the amino acids make proteins sensitive to many factors, such as high temperatures, radiation, and chemicals. All these factors damage proteins and alter their fragile structures, negatively affecting how they function. When proteins are damaged or when they finish performing their functions and are no longer needed, the body breaks them down. With my doctoral adviser, Prof. Avram Hershko, and our research collaborator, Prof. Irwin Rose from the Fox Chase Cancer Center in Philadelphia, we discovered the mechanism responsible for targeted degradation of proteins in cells. This degradation can recognize damaged proteins or proteins that are not needed anymore, while leaving intact the “healthy,” functional ones. This mechanism is called the ubiquitin system after its principal protein, ubiquitin, which was the first protein we discovered in the system. Ubiquitin’s role is to tag undesirable proteins so that the cell’s “grinder” can recognize them and break them down, enabling the cell to function normally. In this article, we will explain the story of proteins and the ubiquitin system that we discovered in a study that earned us, among other prizes, the Nobel Prize in Chemistry in 2004.


2021 ◽  
Vol 22 (17) ◽  
pp. 9629
Author(s):  
Jun-O Jin ◽  
Nidhi Puranik ◽  
Quyen Thu Bui ◽  
Dhananjay Yadav ◽  
Peter Chang-Whan Lee

The ubiquitin system, present in all eukaryotes, contributes to regulating multiple types of cellular protein processes such as cell signaling, cell cycle, and receptor trafficking, and it affects the immune response. In most types of cancer, unusual events in ubiquitin-mediated signaling pathway modulation can lead to a variety of clinical outcomes, including tumor formation and metastasis. Similarly, ubiquitination acts as a core component, which contributes to the alteration of cell signaling activity, dictating biosignal turnover and protein fates. As lung cancer acquires the most commonly mutated proteins, changes in the ubiquitination of the proteins contribute to the development of lung cancer. Various inhibitors targeting the ubiquitin system have been developed for clinical applications in lung cancer treatment. In this review, we summarize the current research advances in therapeutics for lung cancer by targeting the ubiquitin system.


Pathogens ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1034
Author(s):  
Sian Lant ◽  
Carlos Maluquer de Motes

The ubiquitin system has emerged as a master regulator of many, if not all, cellular functions. With its large repertoire of conjugating and ligating enzymes, the ubiquitin system holds a unique mechanism to provide selectivity and specificity in manipulating protein function. As intracellular parasites viruses have evolved to modulate the cellular environment to facilitate replication and subvert antiviral responses. Poxviruses are a large family of dsDNA viruses with large coding capacity that is used to synthetise proteins and enzymes needed for replication and morphogenesis as well as suppression of host responses. This review summarises our current knowledge on how poxvirus functions rely on the cellular ubiquitin system, and how poxviruses exploit this system to their own advantage, either facilitating uncoating and genome release and replication or rewiring ubiquitin ligases to downregulate critical antiviral factors. Whilst much remains to be known about the intricate interactions established between poxviruses and the host ubiquitin system, our knowledge has revealed crucial viral processes and important restriction factors that open novel avenues for antiviral treatment and provide fundamental insights on the biology of poxviruses and other virus families.


Haematologica ◽  
2021 ◽  
Author(s):  
Lisa Traeger ◽  
Steffen B. Wiegand ◽  
Andrew J. Sauer ◽  
Benjamin H.P. Corman ◽  
Kathryn M. Peneyra ◽  
...  

Hepcidin regulates iron homeostasis by controlling the level of ferroportin, the only membrane channel that facilitates export of iron from within cells. Binding of hepcidin to ferroportin induces the ubiquitination of ferroportin at multiple lysine residues and subsequently causes the internalization and degradation of the ligand-channel complex within lysosomes. The objective of this study was to identify components of the ubiquitin system that are involved in ferroportin degradation. A HepG2 cell line, which inducibly expresses ferroportin-GFP (FPN-GFP), was established to test the ability of siRNAs directed against components of the ubiquitin system to prevent BMP6- and exogenous hepcidin-induced ferroportin degradation. Of the 88 siRNAs directed against components of the ubiquitin pathway that were tested, siRNAmediated depletion of the alternative E1 enzyme UBA6 as well as the adaptor protein NDFIP1 prevented BMP6- and hepcidin- induced degradation of ferroportin in vitro. A third component of the ubiquitin pathway, ARIH1, indirectly inhibited ferroportin degradation by impairing BMP6 mediated induction of hepcidin. In mice, the AAVmediated silencing of Ndfip1 in the murine liver increased the level of hepatic ferroportin and increased circulating iron. The results suggest that the E1 enzyme UBA6 and the adaptor protein NDFIP1 are involved in iron homeostasis by regulating the degradation of ferroportin. These specific components of the ubiquitin system may be promising targets for the treatment of iron related diseases, including iron overload and anemia of inflammation.


Sign in / Sign up

Export Citation Format

Share Document