scholarly journals Biochemical characterisation of a collagenase from Bacillus cereus strain Q1

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Isabel J. Hoppe ◽  
Hans Brandstetter ◽  
Esther Schönauer

AbstractCollagen is the most abundant protein in higher animals and as such it is a valuable source of amino acids and carbon for saprophytic bacteria. Due to its unique amino acid composition and triple-helical tertiary structure it can however only be cleaved by specialized proteases like the collagenases secreted by some bacteria. Among the best described bacterial collagenases are ColG and ColH from Clostridium histolyticum. Many Bacillus species contain homologues of clostridial collagenases, which play a role in some infections caused by B. cereus. Detailed biochemical and enzymatic characterizations of bacillial collagenases are however lacking at this time. In an effort to close this gap in knowledge we expressed ColQ1 from B. cereus strain Q1 recombinantly, investigated its metal dependency and performed peptide, gelatin and collagen degradation assays. Our results show that ColQ1 is a true collagenase, cleaving natively folded collagen six times more efficiently than ColG while at the same time being a similarly effective peptidase as ColH. In both ColQ1 and ColG the rate-limiting step in collagenolysis is the unwinding of the triple-helix. The data suggest an orchestrated multi-domain mechanism for efficient helicase activity.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xu Tan ◽  
Sheng Zhang ◽  
Wei Song ◽  
Jia Liu ◽  
Cong Gao ◽  
...  

AbstractIn this study, a four-enzyme cascade pathway was developed and reconstructed in vivo for the production of d-p-hydroxyphenylglycine (D-HPG), a valuable intermediate used to produce β-lactam antibiotics and in fine-chemical synthesis, from l-tyrosine. In this pathway, catalytic conversion of the intermediate 4-hydroxyphenylglyoxalate by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) was identified as the rate-limiting step, followed by application of a mechanism-guided “conformation rotation” strategy to decrease the hydride-transfer distance d(C6HDAP−C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg−1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50-g/L l-tyrosine in 24 h, with 92.5% conversion, 71.5% isolated yield, and > 99% enantiomeric excess in a 3-L fermenter. This four-enzyme cascade provides an efficient enzymatic approach for the industrial production of D-HPG from cheap amino acids.


1971 ◽  
Vol 122 (3) ◽  
pp. 267-276 ◽  
Author(s):  
D. C. N. Earl ◽  
Susan T. Hindley

1. At 3 min after an intravenous injection of radioactive amino acids into the rat, the bulk of radioactivity associated with liver polyribosomes can be interpreted as growing peptides. 2. In an attempt to identify the rate-limiting step of protein synthesis in vivo and in vitro, use was made of the action of puromycin at 0°C, in releasing growing peptides only from the donor site, to study the distribution of growing peptides between the donor and acceptor sites. 3. Evidence is presented that all growing peptides in a population of liver polyribosomes labelled in vivo are similarly distributed between the donor and acceptor sites, and that the proportion released by puromycin is not an artifact of methodology. 4. The proportion released by puromycin is about 50% for both liver and muscle polyribosomes labelled in vivo, suggesting that neither the availability nor binding of aminoacyl-tRNA nor peptide bond synthesis nor translocation can limit the rate of protein synthesis in vivo. Attempts to alter this by starvation, hypophysectomy, growth hormone, alloxan, insulin and partial hepatectomy were unsuccessful. 5. Growing peptides on liver polyribosomes labelled in a cell-free system in vitro or by incubating hemidiaphragms in vitro were largely in the donor site, suggesting that either the availability or binding of aminoacyl-tRNA, or peptide bond synthesis, must be rate limiting in vitro and that the rate-limiting step differs from that in vivo. 6. Neither in vivo nor in the hemidiaphragm system in vitro was a correlation found between the proportion of growing peptides in the donor site and changes in the rate of incorporation of radioactivity into protein. This could indicate that the intracellular concentration of amino acids or aminoacyl-tRNA limits the rate of protein synthesis and that the increased incorporation results from a rise to a higher but still suboptimum concentration.


2019 ◽  
Vol 476 (4) ◽  
pp. 719-732 ◽  
Author(s):  
Mykola M. Ilchenko ◽  
Mariia Yu. Rybak ◽  
Alex V. Rayevsky ◽  
Oksana P. Kovalenko ◽  
Igor Ya. Dubey ◽  
...  

Abstract d-aminoacyl-tRNA-deacylase (DTD) prevents the incorporation of d-amino acids into proteins during translation by hydrolyzing the ester bond between mistakenly attached amino acids and tRNAs. Despite extensive study of this proofreading enzyme, the precise catalytic mechanism remains unknown. Here, a combination of biochemical and computational investigations has enabled the discovery of a new substrate-assisted mechanism of d-Tyr-tRNATyr hydrolysis by Thermus thermophilus DTD. Several functional elements of the substrate, misacylated tRNA, participate in the catalysis. During the hydrolytic reaction, the 2′-OH group of the А76 residue of d-Tyr-tRNATyr forms a hydrogen bond with a carbonyl group of the tyrosine residue, stabilizing the transition-state intermediate. Two water molecules participate in this reaction, attacking and assisting ones, resulting in a significant decrease in the activation energy of the rate-limiting step. The amino group of the d-Tyr aminoacyl moiety is unprotonated and serves as a general base, abstracting the proton from the assisting water molecule and forming a more nucleophilic ester-attacking species. Quantum chemical methodology was used to investigate the mechanism of hydrolysis. The DFT-calculated deacylation reaction is in full agreement with the experimental data. The Gibbs activation energies for the first and second steps were 10.52 and 1.05 kcal/mol, respectively, highlighting that the first step of the hydrolysis process is the rate-limiting step. Several amino acid residues of the enzyme participate in the coordination of the substrate and water molecules. Thus, the present work provides new insights into the proofreading details of misacylated tRNAs and can be extended to other systems important for translation fidelity.


SOIL ◽  
2016 ◽  
Vol 2 (3) ◽  
pp. 433-442 ◽  
Author(s):  
Louise C. Andresen ◽  
Anna-Karin Björsne ◽  
Samuel Bodé ◽  
Leif Klemedtsson ◽  
Pascal Boeckx ◽  
...  

Abstract. The depolymerization of soil organic matter, such as proteins and (oligo-)peptides, into monomers (e.g. amino acids) is currently considered to be the rate-limiting step for nitrogen (N) availability in terrestrial ecosystems. The mineralization of free amino acids (FAAs), liberated by the depolymerization of peptides, is an important fraction of the total mineralization of organic N. Hence, the accurate assessment of peptide depolymerization and FAA mineralization rates is important in order to gain a better process-based understanding of the soil N cycle. In this paper, we present an extended numerical 15N tracing model Ntrace, which incorporates the FAA pool and related N processes in order to provide a more robust and simultaneous quantification of depolymerization and gross mineralization rates of FAAs and soil organic N. We discuss analytical and numerical approaches for two forest soils, suggest improvements of the experimental work for future studies, and conclude that (i) when about half of all depolymerized peptide N is directly mineralized, FAA mineralization can be as important a rate-limiting step for total gross N mineralization as peptide depolymerization rate; (ii) gross FAA mineralization and FAA immobilization rates can be used to develop FAA use efficiency (NUEFAA), which can reveal microbial N or carbon (C) limitation.


2016 ◽  
Author(s):  
Louise C. Andresen ◽  
Anna-Karin Björsne ◽  
Samuel Bodé ◽  
Leif Klemedtsson ◽  
Pascal Boeckx ◽  
...  

Abstract. Depolymerization of soil organic matter such as proteins and peptides into monomers (e.g. amino acids) is currently thought to be the rate limiting step for N availability in terrestrial N cycles. The mineralization of free amino acids (FAA), liberated by depolymerization of peptides, is an important fraction of the total N mineralization. Accurate assessment 10 of peptide depolymerization and FAA mineralization rates is important in order to gain a better understanding of the N cycle dynamics. Due to the short time span, soil disturbance and unnatural high FAA content during the first few hours after the labelling with the traditional 15N pool dilution experiments, analytical models might overestimate peptide depolymerization rate. In this paper, we present an extended numerical 15N tracing model Ntrace which incorporates the FAA pool and related N processes in order to 1) provide a more robust and coherent estimation of production and mineralization rates of FAAs; 2) 15 and 2) suggest an amino acid N use efficiency (NUEFAA) for soil microbes, which is a more realistic estimation of soil microbial NUE compared to the NUE estimated by analytical methods. We compare analytical and numerical approaches for two forest soils; suggest improvements of the experimental work for future studies; and conclude that: i) FAA mineralization might be as equally an important rate limiting step for gross N mineralization as peptide depolymerization rate is, because about half of all depolymerized peptide N is consecutively being mineralized; and that ii) FAA mineralization and FAA 20 immobilization rates should be used for assessing NUEFAA.


2006 ◽  
Vol 50 (12) ◽  
pp. 4124-4131 ◽  
Author(s):  
Christopher R. Bethel ◽  
Andrea M. Hujer ◽  
Kristine M. Hujer ◽  
Jodi M. Thomson ◽  
Mark W. Ruszczycky ◽  
...  

ABSTRACT Among the TEM-type extended-spectrum β-lactamases (ESBLs), an amino acid change at Ambler position 104 (Glu to Lys) results in increased resistance to ceftazidime and cefotaxime when found with other substitutions (e.g., Gly238Ser and Arg164Ser). To examine the role of Asp104 in SHV β-lactamases, site saturation mutagenesis was performed. Our goal was to investigate the properties of amino acid residues at this position that affect resistance to penicillins and oxyimino-cephalosporins. Unexpectedly, 58% of amino acid variants at position 104 in SHV expressed in Escherichia coli DH10B resulted in β-lactamases with lowered resistance to ampicillin. In contrast, increased resistance to cefotaxime was demonstrated only for the Asp104Arg and Asp104Lys β-lactamases. When all 19 substitutions were introduced into the SHV-2 (Gly238Ser) ESBL, the most significant increases in cefotaxime and ceftazidime resistance were noted for both the doubly substituted Asp104Lys Gly238Ser and the doubly substituted Asp104Arg Gly238Ser β-lactamases. Correspondingly, the overall catalytic efficiency (k cat/Km ) of hydrolysis for cefotaxime was increased from 0.60 ± 0.07 μM−1 s−1 (mean ± standard deviation) for Gly238Ser to 1.70 ± 0.01 μM−1 s−1 for the Asp104Lys and Gly238Ser β-lactamase (threefold increase). We also showed that (i) k 3 was the rate-limiting step for the hydrolysis of cefotaxime by Asp104Lys, (ii) the Km for cefotaxime of the doubly substituted Asp104Lys Gly238Ser variant approached that of the Gly238Ser β-lactamase as pH increased, and (iii) Lys at position 104 functions in an energetically additive manner with the Gly238Ser substitution to enhance catalysis of cephalothin. Based on this analysis, we propose that the amino acid at Ambler position 104 in SHV-1 β-lactamase plays a major role in substrate binding and recognition of oxyimino-cephalosporins and influences the interactions of Tyr105 with penicillins.


2021 ◽  
Author(s):  
Xu Tan ◽  
Sheng Zhang ◽  
Wei Song ◽  
Jia Liu ◽  
Cong Gao ◽  
...  

Abstract In this study, we designed and in vivo reconstructed a novel four-enzyme cascade pathway for the production of D-HPG, a valuable intermediate used to produce β-lactam antibiotics and for fine-chemical synthesis, from L-tyrosine. In this pathway, we identified catalytic conversion of the substrate 4-hydroxyphenylglyoxylic acid by meso-diaminopimelate dehydrogenase from Corynebacterium glutamicum (CgDAPDH) as the rate-limiting step, followed by application of a mechanism-guided “conformation rotation” strategy to decrease the hydride-transfer distance d(C6HDAP−C4NNADP) and increase CgDAPDH activity. Introduction of the best variant generated by protein engineering (CgDAPDHBC621/D120S/W144S/I169P with 5.32 ± 0.85 U·mg− 1 specific activity) into the designed pathway resulted in a D-HPG titer of 42.69 g/L from 50 g/L L-tyrosine in 24 h with 92.5% conversion and > 99% ee in a 3-L fermenter, representing the highest reported D-HPG titer to date. This four-enzyme cascade provides a novel and effective enzymatic approach to industrial production of D-HPG from cheap amino acids.


2006 ◽  
Vol 54 (4) ◽  
pp. 31-39 ◽  
Author(s):  
X. Flotats ◽  
J. Palatsi ◽  
B.K. Ahring ◽  
I. Angelidaki

The objective of the present study is to analyse kinetic and stoichiometric parameter values of gelatine anaerobic degradation at thermophilic range, based on an experiment designed to elucidate if volatile fatty acids (VFA) are inhibitors of the hydrolysis process. Results showed that VFA are not inhibiting the hydrolysis process. The ADM1 model adequately expressed the consecutive steps of hydrolysis and acidogenesis, with estimated kinetic values corresponding to a fast acidogenesis and slower hydrolysis. The hydrolysis was found to be the rate limiting step of anaerobic degradation. Estimation of yield coefficients based on the relative initial slopes of VFA profiles obtained in a simple batch experiment produced satisfactory results. From the identification study, it was concluded that it is possible to determine univocally the related kinetic parameter values for protein degradation if the evolution of amino acids is measured in simultaneous batch experiments, with different initial protein and amino acids concentrations.


1992 ◽  
Vol 263 (3) ◽  
pp. R482-R488 ◽  
Author(s):  
C. Cheeseman

Organic solutes leave the intestinal epithelium and enter the circulation via specific facilitated carriers located in the basolateral membrane. In the case of glucose it is a low-affinity, high-capacity transport system that can adapt to the carbohydrate content of the diet. Chronic diabetes also promotes the exit of glucose, and in both cases the effect results from an increased density of carriers in the basolateral membrane. In contrast, a rapid upregulation of this system that can be induced within 30 min by hyperglycemia does not involve large changes in the amount of transporter protein. Similarly, the absorptive capacity of the small intestine from some amino acids can be influenced by events occurring at the basolateral membrane. In the case of dibasic amino acid absorption, exit from the epithelium is the rate-limiting step. The activity of the basolateral carrier can be increased almost 10-fold within 60 s by the addition of micromolar concentrations of the neutral amino acid leucine to either the lumen or the plasma. This response does not involve the second messenger adenosine 3',5'-cyclic monophosphate and may represent an allosteric modulation of the carrier. These observations are discussed in relation to the role of the basolateral membrane as a locus for controlling intestinal absorption of organic nutrients.


Sign in / Sign up

Export Citation Format

Share Document