scholarly journals Distinct chemical blends produced by different reproductive castes in the subterranean termite Reticulitermes flavipes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pierre-André Eyer ◽  
Jared Salin ◽  
Anjel M. Helms ◽  
Edward L. Vargo

AbstractThe production of royal pheromones by reproductives (queens and kings) enables social insect colonies to allocate individuals into reproductive and non-reproductive roles. In many termite species, nestmates can develop into neotenics when the primary king or queen dies, which then inhibit the production of additional reproductives. This suggests that primary reproductives and neotenics produce royal pheromones. The cuticular hydrocarbon heneicosane was identified as a royal pheromone in Reticulitermes flavipes neotenics. Here, we investigated the presence of this and other cuticular hydrocarbons in primary reproductives and neotenics of this species, and the ontogeny of their production in primary reproductives. Our results revealed that heneicosane was produced by most neotenics, raising the question of whether reproductive status may trigger its production. Neotenics produced six additional cuticular hydrocarbons absent from workers and nymphs. Remarkably, heneicosane and four of these compounds were absent in primary reproductives, and the other two compounds were present in lower quantities. Neotenics therefore have a distinct ‘royal’ blend from primary reproductives, and potentially over-signal their reproductive status. Our results suggest that primary reproductives and neotenics may face different social pressures. Future studies of these pressures should provide a more complete understanding of the mechanisms underlying social regulation in termites.

2009 ◽  
Vol 277 (1684) ◽  
pp. 995-1002 ◽  
Author(s):  
Robert Hanus ◽  
Vladimír Vrkoslav ◽  
Ivan Hrdý ◽  
Josef Cvačka ◽  
Jan Šobotník

In 1959, P. Karlson and M. Lüscher introduced the term ‘pheromone’, broadly used nowadays for various chemicals involved in intraspecific communication. To demonstrate the term, they depicted the situation in termite societies, where king and queen inhibit the reproduction of nest-mates by an unknown chemical substance. Paradoxically, half a century later, neither the source nor the chemical identity of this ‘royal’ pheromone is known. In this study, we report for the first time the secretion of polar compounds of proteinaceous origin by functional reproductives in three termite species, Prorhinotermes simplex , Reticulitermes santonensis and Kalotermes flavicollis . Aqueous washes of functional reproductives contained sex-specific proteinaceous compounds, virtually absent in non-reproducing stages. Moreover, the presence of these compounds was clearly correlated with the age of reproductives and their reproductive status. We discuss the putative function of these substances in termite caste recognition and regulation.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Silu Lin ◽  
Jana Werle ◽  
Judith Korb

AbstractOrganisms are typically characterized by a trade-off between fecundity and longevity. Notable exceptions are social insects. In insect colonies, the reproducing caste (queens) outlive their non-reproducing nestmate workers by orders of magnitude and realize fecundities and lifespans unparalleled among insects. How this is achieved is not understood. Here, we identified a single module of co-expressed genes that characterized queens in the termite species Cryptotermes secundus. It encompassed genes from all essential pathways known to be involved in life-history regulation in solitary model organisms. By manipulating its endocrine component, we tested the recent hypothesis that re-wiring along the nutrient-sensing/endocrine/fecundity axis can account for the reversal of the fecundity/longevity trade-off in social insect queens. Our data from termites do not support this hypothesis. However, they revealed striking links to social communication that offer new avenues to understand the re-modelling of the fecundity/longevity trade-off in social insects.


Insects ◽  
2021 ◽  
Vol 12 (3) ◽  
pp. 218
Author(s):  
Lucas Carnohan ◽  
Sang-Bin Lee ◽  
Nan-Yao Su

Effective active ingredients in toxicant bait formulations must be non-deterrent to insect feeding behavior at lethal concentrations. This study evaluated feeding deterrence for Coptotermes formosanus Shiraki, C. gestroi (Wasmann), and Reticulitermes flavipes (Kollar) when provided access to cellulose impregnated with various concentrations of the insect molting hormone, 20-hydroxyecdysone (20E). Termites were exposed to 20E concentrations of 200, 500, 1000 and 2000 ppm and to noviflumuron at 5000 ppm in a 24 h choice-test, and the mass of substrate consumption from treated and untreated media pads was compared for each treatment. 20E feeding deterrence was detected at 500, 1000 and 2000 ppm for C. gestroi, and at 2000 ppm for C. formosanus. No significant differences in consumption of treated and untreated substrate was detected at any concentration for R. flavipes. Potential methods for reducing deterrence are discussed.


2012 ◽  
Vol 102 (6) ◽  
pp. 624-631 ◽  
Author(s):  
C. Gemeno ◽  
N. Laserna ◽  
M. Riba ◽  
J. Valls ◽  
C. Castañé ◽  
...  

AbstractMacrolophus pygmaeus is commercially employed in the biological control of greenhouse and field vegetable pests. It is morphologically undistinguishable from the cryptic species M. melanotoma, and this interferes with the evaluation of the biological control activity of M. pygmaeus. We analysed the potential of cuticular hydrocarbon composition as a method to discriminate the two Macrolophus species. A third species, M. costalis, which is different from the other two species by having a dark spot at the tip of the scutellum, served as a control. Sex, diet and species, all had significant effects in the cuticular hydrocarbon profiles, but the variability associated to sex or diet was smaller than among species. Discriminant quadratic analysis of cuticular hydrocarbons confirmed the results of previous molecular genetic studies and showed, using cross-validation methods, that M. pygmaeus can be discriminated from M. costalis and M. melanotoma with prediction errors of 6.75% and 0%, respectively. Therefore, cuticular hydrocarbons can be used to separate M. pygmaeus from M. melanotoma reliably.


2009 ◽  
Vol 19 (1) ◽  
pp. 78-81 ◽  
Author(s):  
Adrian A. Smith ◽  
Bert Hölldober ◽  
Jürgen Liebig

2001 ◽  
Vol 36 (2) ◽  
pp. 109-113 ◽  
Author(s):  
Rudolf H. Scheffrahn ◽  
Nan-Yao Su ◽  
James A. Chase ◽  
Brian T. Forschler

Deliberate surveys and submitted samples have yielded five termite species not previously recorded from Georgia including Coptotermes formosanus Shiraki (Family Rhinotermitidae), and Calcaritermes nearcticus (Snyder), Cryptotermes brevis (Walker), Incisitermes minor (Hagen), and Kalotermes approximatus Snyder (Family Kalotermitidae) bringing the total number of termite species in Georgia to nine. Coptotermes formosanus, C. brevis, and I. minor are all non-endemic pest species in Georgia. The Georgia records for C. nearcticus are the first outside of Florida and represent new northern limits, while collections of K. approximatus bridge a former gap in its north-south distribution. Previous records for Reticulitermes flavipes (Kollar), R. hageni Banks, and R. virginicus (Banks) (Family Rhinotermitidae), and Incisitermes snyderi (Light) (Kalotermitidae) are confirmed, while the name R. malletei is relegated to nomen nudum status. The prospects for additional termite records and status of Reticulitermes taxonomy in Georgia are discussed.


2001 ◽  
Vol 49 (5) ◽  
pp. 401-409 ◽  
Author(s):  
Matthew F. Sledge ◽  
Francesca Boscaro ◽  
Stefano Turillazzi

2014 ◽  
Vol 281 (1792) ◽  
pp. 20140821 ◽  
Author(s):  
Susan N. Gershman ◽  
Ethan Toumishey ◽  
Howard D. Rundle

Recent work on Drosophila cuticular hydrocarbons (CHCs) challenges a historical assumption that CHCs in flies are largely invariant. Here, we examine the effect of time of day and social environment on a suite of sexually selected CHCs in Drosophila serrata . We demonstrate that males become more attractive to females during the time of day that flies are most active and when most matings occur, but females become less attractive to males during the same time of day. These opposing temporal changes may reflect differences in selection among the sexes. To evaluate the effect of social environment on male CHC attractiveness, we manipulated male opportunity for mating: male flies were housed either alone, with five females, with five males or with five males and five females. We found that males had the most attractive CHCs when with females, and less attractive CHCs when with competitor males. Social environment mediated how male CHC attractiveness cycled: males housed with females and/or other males showed temporal changes in CHC attractiveness, whereas males housed alone did not. In total, our results demonstrate temporal patterning of male CHCs that is dependent on social environment, and suggest that such changes may be beneficial to males.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Cassondra L Vernier ◽  
Joshua J Krupp ◽  
Katelyn Marcus ◽  
Abraham Hefetz ◽  
Joel D Levine ◽  
...  

Large social insect colonies exhibit a remarkable ability for recognizing group members via colony-specific cuticular pheromonal signatures. Previous work suggested that in some ant species, colony-specific pheromonal profiles are generated through a mechanism involving the transfer and homogenization of cuticular hydrocarbons (CHCs) across members of the colony. However, how colony-specific chemical profiles are generated in other social insect clades remains mostly unknown. Here we show that in the honey bee (Apis mellifera), the colony-specific CHC profile completes its maturation in foragers via a sequence of stereotypic age-dependent quantitative and qualitative chemical transitions, which are driven by environmentally-sensitive intrinsic biosynthetic pathways. Therefore, the CHC profiles of individual honey bees are not likely produced through homogenization and transfer mechanisms, but instead mature in association with age-dependent division of labor. Furthermore, non-nestmate rejection behaviors seem to be contextually restricted to behavioral interactions between entering foragers and guards at the hive entrance.


2011 ◽  
Vol 8 (1) ◽  
pp. 17-20 ◽  
Author(s):  
Ellen van Wilgenburg ◽  
Antoine Felden ◽  
Dong-Hwan Choe ◽  
Robert Sulc ◽  
Jun Luo ◽  
...  

Social insect cuticular hydrocarbon (CHC) mixtures are among the most complex chemical cues known and are important in nest-mate, caste and species recognition. Despite our growing knowledge of the nature of these cues, we have very little insight into how social insects actually perceive and discriminate among these chemicals. In this study, we use the newly developed technique of differential olfactory conditioning to pure, custom-designed synthetic colony odours to analyse signal discrimination in Argentine ants, Linepithema humile . Our results show that tri-methyl alkanes are more easily learned than single-methyl or straight-chain alkanes. In addition, we reveal that Argentine ants can discriminate between hydrocarbons with different branching patterns and the same chain length, but not always between hydrocarbons with the same branching patterns but different chain length. Our data thus show that biochemical characteristics influence those compounds that ants can discriminate between, and which thus potentially play a role in chemical signalling and nest-mate recognition.


Sign in / Sign up

Export Citation Format

Share Document