temporal patterning
Recently Published Documents


TOTAL DOCUMENTS

221
(FIVE YEARS 47)

H-INDEX

39
(FIVE YEARS 4)

PLoS Genetics ◽  
2021 ◽  
Vol 17 (11) ◽  
pp. e1009599
Author(s):  
Colleen Carlston ◽  
Robin Weinmann ◽  
Natalia Stec ◽  
Simona Abbatemarco ◽  
Francoise Schwager ◽  
...  

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression, we identified pqn-59, an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs. Specifically, we find that depletion of pqn-59 can restore normal development in animals with reduced lin-4 and let-7-family miRNA activity. Importantly, inactivation of pqn-59 is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The pqn-59 gene encodes an abundant, cytoplasmically-localized, unstructured protein that harbors three essential “prion-like” domains. These domains exhibit LLPS properties in vitro and normally function to limit PQN-59 diffusion in the cytoplasm in vivo. Like human UBAP2L, PQN-59’s localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that pqn-59 depletion reduces protein translation and also results in the stabilization of several mature miRNAs (including those involved in temporal patterning). These data suggest that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


PLoS Biology ◽  
2021 ◽  
Vol 19 (11) ◽  
pp. e3001450
Author(s):  
Andreas Sagner ◽  
Isabel Zhang ◽  
Thomas Watson ◽  
Jorge Lazaro ◽  
Manuela Melchionda ◽  
...  

The molecular mechanisms that produce the full array of neuronal subtypes in the vertebrate nervous system are incompletely understood. Here, we provide evidence of a global temporal patterning program comprising sets of transcription factors that stratifies neurons based on the developmental time at which they are generated. This transcriptional code acts throughout the central nervous system, in parallel to spatial patterning, thereby increasing the diversity of neurons generated along the neuraxis. We further demonstrate that this temporal program operates in stem cell−derived neurons and is under the control of the TGFβ signaling pathway. Targeted perturbation of components of the temporal program, Nfia and Nfib, reveals their functional requirement for the generation of late-born neuronal subtypes. Together, our results provide evidence for the existence of a previously unappreciated global temporal transcriptional program of neuronal subtype identity and suggest that the integration of spatial and temporal patterning mechanisms diversifies and organizes neuronal subtypes in the vertebrate nervous system.


Cell Reports ◽  
2021 ◽  
Vol 37 (7) ◽  
pp. 109994
Author(s):  
Pin Lyu ◽  
Thanh Hoang ◽  
Clayton P. Santiago ◽  
Eric D. Thomas ◽  
Andrew E. Timms ◽  
...  

2021 ◽  
Author(s):  
Alokananda Ray ◽  
Xin Li

Temporal patterning is an important mechanism for generating a great diversity of neuron subtypes from a seemingly homogenous progenitor pool in both vertebrates and invertebrates. Drosophila neuroblasts have been shown to be temporally patterned by sequentially expressed Temporal Transcription Factors (TTFs). These TTFs are proposed to form a transcriptional cascade based on mutant phenotypes, although direct transcriptional regulation between TTFs has not been verified in most cases. Furthermore, it is not known how the temporal transitions are coupled with generation of the appropriate number of neurons at each stage. We use neuroblasts of the Drosophila optic lobe medulla to address these questions, and show that the expression of TTFs Sloppy-paired 1/ 2 (Slp1/2) is regulated at transcriptional level directly by two other TTFs and the cell-cycle dependent Notch signaling through two cis-regulatory elements. We also show that supplying transcriptional active Notch can rescue the delayed transition into the Slp stage in cell cycle arrested neuroblasts. Our findings reveal how an interplay between temporal patterning, the neuroblast cell cycle and key signaling pathways such as Notch achieves precise regulation of patterning transcription factor gene expression that is characteristic of these programs.


2021 ◽  
Author(s):  
Pin Lyu ◽  
Thanh Hoang ◽  
Clayton P Santiago ◽  
Eric Thomas ◽  
Andrew Timms ◽  
...  

Gene regulatory networks (GRNs), consisting of transcription factors and their target cis-regulatory sequences, control neurogenesis and cell fate specification in the developing central nervous system, but their organization is poorly characterized. In this study, we performed integrated scRNA-seq and scATAC-seq analysis from both mouse and human retina to profile dynamic changes in gene expression, chromatin accessibility and transcription factor footprinting during retinal neurogenesis. We identified multiple interconnected, evolutionarily-conserved GRNs consisting of cell type-specific transcription factors that both activate expression of genes within their own network and often inhibit expression of genes in other networks. These GRNs control state transitions within primary retinal progenitors that underlie temporal patterning, regulate the transition from primary to neurogenic progenitors, and drive specification of each major retinal cell type. We confirmed the prediction of this analysis that the NFI transcription factors Nfia, Nfib, and Nfix selectively activate expression of genes that promote late-stage temporal identity in primary retinal progenitors. We also used GRNs to identify additional transcription factors that selectively promote (Insm1/2) and inhibit (Tbx3, Tcf7l1/2) rod photoreceptor specification in postnatal retina. This study provides an inventory of cis- and trans-acting factors that control retinal development, identifies transcription factors that control the temporal identity of retinal progenitors and cell fate specification, and will potentially help guide cell-based therapies aimed at replacing retinal neurons lost due to disease.


2021 ◽  
Author(s):  
Nikolaos Konstantinides ◽  
Anthony M. Rossi ◽  
Aristides Escobar ◽  
Liébaut Dudragne ◽  
Yen-Chung Chen ◽  
...  

AbstractThe brain consists of thousands of different neuronal types that are generated through multiple divisions of neuronal stem cells. These stem cells have the capacity to generate different neuronal types at different stages of their development. In Drosophila, this temporal patterning is driven by the successive expression of temporal transcription factors (tTFs). While a number of tTFs are known in different animals and across various parts of the nervous system, these have been mostly identified by informed guesses and antibody availability. We used single-cell mRNA sequencing to identify the complete series of tTFs that specify most Drosophila medulla neurons in the optic lobe. We tested the genetic interactions among these tTFs. While we verify the general principle that tTFs regulate the progression of the series by activating the next tTFs in the series and repressing the previous ones, we also identify more complex regulations. Two of the tTFs, Eyeless and Dichaete, act as hubs integrating the input of several upstream tTFs before allowing the series to progress and in turn regulating the expression of several downstream tTFs. Moreover, we show that tTFs not only specify neuronal identity by controlling the expression of cell type-specific genes. Finally, we describe the very first steps of neuronal differentiation and find that terminal differentiation genes, such as neurotransmitter-related genes, are present as transcripts, but not as proteins, in immature larval neurons days before they are being used in functioning neurons; we show that these mechanisms are conserved in humans. Our results offer a comprehensive description of a temporal series of tTFs in a neuronal system, offering mechanistic insights into the regulation of the progression of the series and the regulation of neuronal diversity. This represents a proof-of-principle for the use of single-cell mRNA sequencing for the comparison of temporal patterning across phyla that can lead to an understanding of how the human brain develops and how it has evolved.


2021 ◽  
Author(s):  
Hailun Zhu ◽  
Sihai Dave Zhao ◽  
Alokananda Ray ◽  
Yu Zhang ◽  
Xin Li

During development, neural stem cells are temporally patterned to sequentially generate a variety of neural types before exiting the cell cycle. Temporal patterning is well-studied in Drosophila, where neural stem cells called neuroblasts sequentially express cascades of Temporal Transcription Factors (TTFs) to control the birth-order dependent neural specification. However, currently known TTFs were mostly identified through candidate approaches and may not be complete. In addition, many fundamental questions remain concerning the TTF cascade initiation, progression, and termination. It is also not known why temporal progression only happens in neuroblasts but not in their differentiated progeny. In this work, we performed single-cell RNA sequencing of Drosophila medulla neuroblasts of all ages to study the temporal patterning process with single-cell resolution. Our scRNA-seq data revealed that sets of genes involved in different biological processes show high to low or low to high gradients as neuroblasts age. We also identified a list of novel TTFs, and experimentally characterized their roles in the temporal progression and neural fate specification. Our study revealed a comprehensive temporal gene network that patterns medulla neuroblasts from start to end. Furthermore, we found that the progression and termination of this temporal cascade also require transcription factors differentially expressed along the differentiation axis (neuroblasts -> -> neurons). Lola proteins function as a speed modulator of temporal progression in neuroblasts; while Nerfin-1, a factor required to suppress de-differentiation in post-mitotic neurons, acts at the final temporal stage together with the last TTF of the cascade, to promote the switch to gliogenesis and the cell cycle exit. Our comprehensive study of the medulla neuroblast temporal cascade illustrated mechanisms that might be conserved in the temporal patterning of neural stem cells.


2021 ◽  
Author(s):  
Jocelyn L. Y. Tang ◽  
Anna Hakes ◽  
Robert Krautz ◽  
Takumi Suzuki ◽  
Esteban Contreras ◽  
...  

Temporal patterning of neural progenitors is an evolutionarily conserved strategy for generating neuronal diversity. Type II neural stem cells in the Drosophila central brain produce transit-amplifying intermediate neural progenitors (INPs) that exhibit temporal patterning. However, the known temporal factors cannot account for the neuronal diversity in the adult brain. To search for new temporal factors, we developed NanoDam, which enables rapid genome-wide profiling of endogenously-tagged proteins in vivo with a single genetic cross. Mapping the targets of known temporal transcription factors with NanoDam identified Homeobrain and Scarecrow (ARX and NKX2.1 orthologues) as novel temporal factors. We show that Homeobrain and Scarecrow define middle-aged and late INP temporal windows and play a role in cellular longevity. Strikingly, Homeobrain and Scarecrow have conserved functions as temporal factors in the developing visual system. NanoDam enables rapid cell type-specific genome-wide profiling with temporal resolution and can be easily adapted for use in higher organisms.


2021 ◽  
Author(s):  
Christopher Martin Hammell ◽  
Colleen Carlston ◽  
Robin Weinmann ◽  
Natalia Stec ◽  
Simona Abbatemarco ◽  
...  

microRNAs (miRNAs) are potent regulators of gene expression that function in a variety of developmental and physiological processes by dampening the expression of their target genes at a post-transcriptional level. In many gene regulatory networks (GRNs), miRNAs function in a switch-like manner whereby their expression and activity elicit a transition from one stable pattern of gene expression to a distinct, equally stable pattern required to define a nascent cell fate. While the importance of miRNAs that function in this capacity are clear, we have less of an understanding of the cellular factors and mechanisms that ensure the robustness of this form of regulatory bistability. In a screen to identify suppressors of temporal patterning phenotypes that result from ineffective miRNA-mediated target repression during  C. elegans  development, we identified  pqn-59,  an ortholog of human UBAP2L, as a novel factor that antagonizes the activities of multiple heterochronic miRNAs.  Specifically, we find that depletion of  pqn-59 can restore normal development in animals with reduced miRNA activity. Importantly, inactivation of  pqn-59  is not sufficient to bypass the requirement of these regulatory RNAs within the heterochronic GRN. The  pqn-59  gene encodes an abundant, cytoplasmically localized and unstructured protein that harbors three essential “prion-like” domains.  These domains exhibit LLPS properties  in vitro  and normally function to limit PQN-59 diffusion in the cytoplasm  in vivo . Like human UBAP2L, PQN-59’s localization becomes highly dynamic during stress conditions where it re-distributes to cytoplasmic stress granules and is important for their formation. Proteomic analysis of PQN-59 complexes from embryonic extracts indicates that PQN-59 and human UBAP2L interact with orthologous cellular components involved in RNA metabolism and promoting protein translation and that PQN-59 additionally interacts with proteins involved in transcription and intracellular transport. Finally, we demonstrate that  pqn-59  depletion results in the stabilization of several mature miRNAs (including those involved in temporal patterning) without altering steady-state pre-miRNAs levels indicating that PQN-59 may ensure the bistability of some GRNs that require miRNA functions by promoting miRNA turnover and, like UBAP2L, enhancing protein translation.


Sign in / Sign up

Export Citation Format

Share Document