scholarly journals Autocrine IGF2 programmes β-cell plasticity under conditions of increased metabolic demand

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ionel Sandovici ◽  
Constanze M. Hammerle ◽  
Sam Virtue ◽  
Yurena Vivas-Garcia ◽  
Adriana Izquierdo-Lahuerta ◽  
...  

AbstractWhen exposed to nutrient excess and insulin resistance, pancreatic β-cells undergo adaptive changes in order to maintain glucose homeostasis. The role that growth control genes, highly expressed in early pancreas development, might exert in programming β-cell plasticity in later life is a poorly studied area. The imprinted Igf2 (insulin-like growth factor 2) gene is highly transcribed during early life and has been identified in recent genome-wide association studies as a type 2 diabetes susceptibility gene in humans. Hence, here we investigate the long-term phenotypic metabolic consequences of conditional Igf2 deletion in pancreatic β-cells (Igf2βKO) in mice. We show that autocrine actions of IGF2 are not critical for β-cell development, or for the early post-natal wave of β-cell remodelling. Additionally, adult Igf2βKO mice maintain glucose homeostasis when fed a chow diet. However, pregnant Igf2βKO females become hyperglycemic and hyperinsulinemic, and their conceptuses exhibit hyperinsulinemia and placentomegalia. Insulin resistance induced by congenital leptin deficiency also renders Igf2βKO females more hyperglycaemic compared to leptin-deficient controls. Upon high-fat diet feeding, Igf2βKO females are less susceptible to develop insulin resistance. Based on these findings, we conclude that in female mice, autocrine actions of β-cell IGF2 during early development determine their adaptive capacity in adult life.

2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


2021 ◽  
Author(s):  
Xingjing Liu ◽  
Peng Sun ◽  
Qingzhao Yuan ◽  
Jinyang Xie ◽  
Ting Xiao ◽  
...  

Calcium/calmodulin-dependent serine protein kinase (CASK) is involved in the secretion of insulin vesicles in pancreatic β-cells. The present study revealed a new <i>in vivo </i>role of CASK in glucose homeostasis during the progression of type 2 diabetes mellitus (T2DM). A Cre-loxP system was used to specifically delete the <i>Cask </i>gene in mouse β-cells (βCASKKO), and the glucose metabolism was evaluated in <a>βCASKKO</a> mice fed a normal chow diet (ND) or a high-fat diet (HFD). ND-fed mice exhibited impaired insulin secretion in response to glucose stimulation. Transmission electron microscopy showed significantly reduced numbers of insulin granules at or near the cell membrane in the islets of βCASKKO mice. By contrast, HFD-fed βCASKKO mice showed reduced blood glucose and a partial relief of hyperinsulinemia and insulin resistance when compared to HFD-fed wildtype mice. The IRS1/PI3K/AKT signaling pathway was upregulated in the adipose tissue of HFD-βCASKKO mice. These results indicated that knockout of the <i>Cask</i> gene in β cells had a diverse effect on glucose homeostasis: reduced insulin secretion in ND-fed mice, but improves insulin sensitivity in HFD-fed mice. Therefore, CASK appears to function in the insulin secretion and contributes to hyperinsulinemia and insulin resistance during the development of obesity-related T2DM.


2021 ◽  
Author(s):  
John T Walker ◽  
Diane C Saunders ◽  
Vivek Rai ◽  
Chunhua Dai ◽  
Peter Orchard ◽  
...  

A hallmark of type 2 diabetes (T2D), a major cause of world-wide morbidity and mortality, is dysfunction of insulin-producing pancreatic islet β cells. T2D genome-wide association studies (GWAS) have identified hundreds of signals, mostly in the non-coding genome and overlapping β cell regulatory elements, but translating these into biological mechanisms has been challenging. To identify early disease-driving events, we performed single cell spatial proteomics, sorted cell transcriptomics, and assessed islet physiology on pancreatic tissue from short-duration T2D and control donors. Here, through integrative analyses of these diverse modalities, we show that multiple gene regulatory modules are associated with early-stage T2D β cell-intrinsic defects. One notable example is the transcription factor RFX6, which we show is a highly connected β cell hub gene that is reduced in T2D and governs a gene regulatory network associated with insulin secretion defects and T2D GWAS variants. We validated the critical role of RFX6 in β cells through direct perturbation in primary human islets followed by physiological and single nucleus multiome profiling, which showed reduced dynamic insulin secretion and large-scale changes in the β cell transcriptome and chromatin accessibility landscape. Understanding the molecular mechanisms of complex, systemic diseases necessitates integration of signals from multiple molecules, cells, organs, and individuals and thus we anticipate this approach will be a useful template to identify and validate key regulatory networks and master hub genes for other diseases or traits with GWAS data.


Biomolecules ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1057
Author(s):  
Blandine Gausserès ◽  
Junjun Liu ◽  
Ewout Foppen ◽  
Cécile Tourrel-Cuzin ◽  
Ana Rodriguez Sanchez-Archidona ◽  
...  

Objective: Type 2 diabetes (T2D) occurs by deterioration in pancreatic β-cell function and/or progressive loss of pancreatic β-cell mass under the context of insulin resistance. α7 nicotinic acetylcholine receptor (nAChR) may contribute to insulin sensitivity but its role in the pathogenesis of T2D remains undefined. We investigated whether the systemic lack of α7 nAChR was sufficient to impair glucose homeostasis. Methods: We used an α7 nAChR knock-out (α7−/−) mouse model fed a standard chow diet. The effects of the lack of α7 nAChR on islet mass, insulin secretion, glucose and insulin tolerance, body composition, and food behaviour were assessed in vivo and ex vivo experiments. Results: Young α7−/− mice display a chronic mild high glycemia combined with an impaired glucose tolerance and a marked deficit in β-cell mass. In addition to these metabolic disorders, old mice developed adipose tissue inflammation, elevated plasma free fatty acid concentrations and presented glycolytic muscle insulin resistance in old mice. Finally, α7−/− mice, fed a chow diet, exhibited a late-onset excessive gain in body weight through increased fat mass associated with higher food intake. Conclusion: Our work highlights the important role of α7 nAChR in glucose homeostasis. The constitutive lack of α7 nAChR suggests a novel pathway influencing the pathogenesis of T2D.


2021 ◽  
Author(s):  
Byung-Jun Sung ◽  
Sung-Bin Lim ◽  
Jae Hyeon Kim ◽  
Won-Mo Yang ◽  
Rohit N Kulkarni ◽  
...  

Objective: The endocrine pancreatic β-cells play a pivotal role in the maintenance of whole-body glucose homeostasis and its dysregulation is a consistent feature in all forms of diabetes. However, knowledge of intracellular regulators that modulate b-cell function remains incomplete. We investigated the physiological role of ROCK1 in the regulation of insulin secretion and glucose homeostasis. Methods: Mice lacking ROCK1 in pancreatic β-cells (RIP-Cre; ROCK1loxP/loxP, β-ROCK1-/-) were studied. Glucose and insulin tolerance tests as well as glucose-stimulated insulin secretion (GSIS) were measured. Insulin secretion response to a direct glucose or pyruvate or pyruvate kinase (PK) activator stimulation in isolated islets from β-ROCK1-/- mice or β-cell lines with knockdown of ROCK1 were also evaluated. Proximity ligation assay was performed to determine the physical interactions between PK and ROCK1. Results: Mice with a deficiency of ROCK1 in pancreatic β-cells exhibited significantly increased blood glucose levels and reduced serum insulin without changes in body weight. Interestingly, β-ROCK1-/- mice displayed progressive impairment of glucose tolerance while maintaining insulin sensitivity mostly due to impaired GSIS. Consistently, GSIS was markedly decreased in ROCK1-deficient islets and ROCK1 knockdown INS-1 cells. Concurrently, ROCK1 blockade led to a significant decrease in intracellular calcium levels, ATP levels, and oxygen consumption rates in isolated islets and INS-1 cells. Treatment of ROCK1-deficient islets or ROCK1 knockdown β-cells either with pyruvate or a PK activator rescued the impaired GSIS. Mechanistically, we observed that ROCK1 binding to PK is greatly enhanced by glucose stimulation in β-cells. Conclusions: Our findings demonstrate that β-cell ROCK1 is essential for glucose-stimulated insulin secretion and maintenance of glucose homeostasis and that ROCK1 acts as an upstream regulator of glycolytic pyruvate kinase signaling.


2010 ◽  
Vol 433 (1) ◽  
pp. 95-105 ◽  
Author(s):  
Lynley D. Pound ◽  
Yan Hang ◽  
Suparna A. Sarkar ◽  
Yingda Wang ◽  
Laurel A. Milam ◽  
...  

The SLC30A8 gene encodes the zinc transporter ZnT-8, which provides zinc for insulin-hexamer formation. Genome-wide association studies have shown that a polymorphic variant in SLC30A8 is associated with altered susceptibility to Type 2 diabetes and we recently reported that glucose-stimulated insulin secretion is decreased in islets isolated from Slc30a8-knockout mice. The present study examines the molecular basis for the islet-specific expression of Slc30a8. VISTA analyses identified two conserved regions in Slc30a8 introns 2 and 3, designated enhancers A and B respectively. Transfection experiments demonstrated that enhancer B confers elevated fusion gene expression in both βTC-3 cells and αTC-6 cells. In contrast, enhancer A confers elevated fusion gene expression selectively in βTC-3 and not αTC-6 cells. These data suggest that enhancer A is an islet β-cell-specific enhancer and that the mechanisms controlling Slc30a8 expression in α- and β-cells are overlapping, but distinct. Gel retardation and ChIP (chromatin immunoprecipitation) assays revealed that the islet-enriched transcription factor Pdx-1 binds enhancer A in vitro and in situ respectively. Mutation of two Pdx-1-binding sites in enhancer A markedly reduces fusion gene expression suggesting that this factor contributes to Slc30a8 expression in β-cells, a conclusion consistent with developmental studies showing that restriction of Pdx-1 to pancreatic islet β-cells correlates with the induction of Slc30a8 gene expression and ZnT-8 protein expression in vivo.


Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 218
Author(s):  
Norikiyo Honzawa ◽  
Kei Fujimoto

Type 2 diabetes is caused by impaired insulin secretion and/or insulin resistance. Loss of pancreatic β-cell mass detected in human diabetic patients has been considered to be a major cause of impaired insulin secretion. Additionally, apoptosis is found in pancreatic β-cells; β-cell mass loss is induced when cell death exceeds proliferation. Recently, however, β-cell dedifferentiation to pancreatic endocrine progenitor cells and β-cell transdifferentiation to α-cell was reported in human islets, which led to a new underlying molecular mechanism. Hyperglycemia inhibits nuclear translocation and expression of forkhead box-O1 (FoxO1) and induces the expression of neurogenin-3(Ngn3), which is required for the development and maintenance of pancreatic endocrine progenitor cells. This new hypothesis (Foxology) is attracting attention because it explains molecular mechanism(s) underlying β-cell plasticity. The lineage tracing technique revealed that the contribution of dedifferentiation is higher than that of β-cell apoptosis retaining to β-cell mass loss. In addition, islet cells transdifferentiate each other, such as transdifferentiation of pancreatic β-cell to α-cell and vice versa. Islet cells can exhibit plasticity, and they may have the ability to redifferentiate into any cell type. This review describes recent findings in the dedifferentiation and transdifferentiation of β-cells. We outline novel treatment(s) for diabetes targeting islet cell plasticity.


2020 ◽  
Vol 4 (3) ◽  
pp. e202000825
Author(s):  
Maria Inês Alvelos ◽  
Mirko Brüggemann ◽  
FX Reymond Sutandy ◽  
Jonàs Juan-Mateu ◽  
Maikel Luis Colli ◽  
...  

In pancreatic β-cells, the expression of the splicing factor SRSF6 is regulated by GLIS3, a transcription factor encoded by a diabetes susceptibility gene. SRSF6 down-regulation promotes β-cell demise through splicing dysregulation of central genes for β-cells function and survival, but how RNAs are targeted by SRSF6 remains poorly understood. Here, we define the SRSF6 binding landscape in the human pancreatic β-cell line EndoC-βH1 by integrating individual-nucleotide resolution UV cross-linking and immunoprecipitation (iCLIP) under basal conditions with RNA sequencing after SRSF6 knockdown. We detect thousands of SRSF6 bindings sites in coding sequences. Motif analyses suggest that SRSF6 specifically recognizes a purine-rich consensus motif consisting of GAA triplets and that the number of contiguous GAA triplets correlates with increasing binding site strength. The SRSF6 positioning determines the splicing fate. In line with its role in β-cell function, we identify SRSF6 binding sites on regulated exons in several diabetes susceptibility genes. In a proof-of-principle, the splicing of the susceptibility gene LMO7 is modulated by antisense oligonucleotides. Our present study unveils the splicing regulatory landscape of SRSF6 in immortalized human pancreatic β-cells.


Sign in / Sign up

Export Citation Format

Share Document