scholarly journals Circulating short and medium chain fatty acids are associated with normoalbuminuria in type 1 diabetes of long duration

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salina Moon ◽  
John J. Tsay ◽  
Heather Lampert ◽  
Zaipul I. Md Dom ◽  
Aleksandar D. Kostic ◽  
...  

AbstractA substantial number of subjects with Type 1 Diabetes (T1D) of long duration never develop albuminuria or renal function impairment, yet the underlying protective mechanisms remain unknown. Therefore, our study included 308 Joslin Kidney Study subjects who had T1D of long duration (median: 24 years), maintained normal renal function and had either normoalbuminuria or a broad range of albuminuria within the 2 years preceding the metabolomic determinations. Serum samples were subjected to global metabolomic profiling. 352 metabolites were detected in at least 80% of the study population. In the logistic analyses adjusted for multiple testing (Bonferroni corrected α = 0.000028), we identified 38 metabolites associated with persistent normoalbuminuria independently from clinical covariates. Protective metabolites were enriched in Medium Chain Fatty Acids (MCFAs) and in Short Chain Fatty Acids (SCFAs) and particularly involved odd-numbered and dicarboxylate Fatty Acids. One quartile change of nonanoate, the top protective MCFA, was associated with high odds of having persistent normoalbuminuria (OR (95% CI) 0.14 (0.09, 0.23); p < 10–12). Multivariable Random Forest analysis concordantly indicated to MCFAs as effective classifiers. Associations of the relevant Fatty Acids with albuminuria seemed to parallel associations with tubular biomarkers. Our findings suggest that MCFAs and SCFAs contribute to the metabolic processes underlying protection against albuminuria development in T1D that are independent from mechanisms associated with changes in renal function.

2018 ◽  
Vol 2 (2) ◽  
pp. 372-380 ◽  
Author(s):  
M. Venkateswar Reddy ◽  
S. Venkata Mohan ◽  
Young-Cheol Chang

Chain elongation is the process by which bacteria convert ethanol and short chain fatty acids (SCFA) into medium chain fatty acids (MCFA).


2021 ◽  
Vol 22 (12) ◽  
pp. 6453
Author(s):  
Qi Hui Sam ◽  
Hua Ling ◽  
Wen Shan Yew ◽  
Zhaohong Tan ◽  
Sharada Ravikumar ◽  
...  

Fatty acids are derived from diet and fermentative processes by the intestinal flora. Two to five carbon chain fatty acids, termed short chain fatty acids (SCFA) are increasingly recognized to play a role in intestinal homeostasis. However, the characteristics of slightly longer 6 to 10 carbon, medium chain fatty acids (MCFA), derived primarily from diet, are less understood. Here, we demonstrated that SCFA and MCFA have divergent immunomodulatory propensities. SCFA down-attenuated host pro-inflammatory IL-1β, IL-6, and TNFα response predominantly through the TLR4 pathway, whereas MCFA augmented inflammation through TLR2. Butyric (C4) and decanoic (C10) acid displayed most potent modulatory effects within the SCFA and MCFA, respectively. Reduction in TRAF3, IRF3 and TRAF6 expression were observed with butyric acid. Decanoic acid induced up-regulation of GPR84 and PPARγ and altered HIF-1α/HIF-2α ratio. These variant immune characteristics of the fatty acids which differ by just several carbon atoms may be attributable to their origins, with SCFA being primarily endogenous and playing a physiological role, and MCFA exogenously from the diet.


PLoS ONE ◽  
2017 ◽  
Vol 12 (9) ◽  
pp. e0183786 ◽  
Author(s):  
James C. Needell ◽  
Diana Ir ◽  
Charles E. Robertson ◽  
Miranda E. Kroehl ◽  
Daniel N. Frank ◽  
...  

2001 ◽  
Vol 120 (5) ◽  
pp. 1152-1161 ◽  
Author(s):  
Jimmy R. Jørgensen ◽  
Mark D. Fitch ◽  
Per B. Mortensen ◽  
Sharon E. Fleming

2021 ◽  
Author(s):  
Jessica E. Harbison ◽  
Rebecca L. Thomson ◽  
John M. Wentworth ◽  
Jennie Louise ◽  
Alexandra Roth‐Schulze ◽  
...  

2017 ◽  
Vol 14 (3) ◽  
pp. 377-385 ◽  
Author(s):  
Angelica A. Ochoa-Flores ◽  
Josafat A. Hernández-Becerra ◽  
Adriana Cavazos-Garduño ◽  
Ida Soto-Rodríguez ◽  
Maria Guadalupe Sanchez-Otero ◽  
...  

Author(s):  
Huan Liu ◽  
Jingwei Huang ◽  
Hui Liu ◽  
Feng Li ◽  
Quansheng Peng ◽  
...  

Abstract Background The ketogenic diet (KD) can promote the anti-inflammatory metabolic state and increase ketone body level in rats. This study was to explore the effects and differences of KD with or without medium-chain fatty acids (MCFAs) on serum inflammatory factors and mTOR pathway in Sprague–Dawley (SD) rats. Results Male SD rats were assigned to five groups: control diet (C), 20% caloric restriction diet (LC), 20% caloric restriction ketogenic diet (containing MCFAs) (LCKD1), 20% caloric restriction ketogenic diet (LCKD2) and 20% caloric restriction foreign ketogenic diet (LCKD3), and fed for 30 d. LC and KD could significantly reduce the body weight of rats; LC and KD containing MCFAs showed anti-inflammatory effects; KD without MCFAs decreased the concentration of mTOR1, while KD containing MCFAs decreased the expression of AMPK, mtor1 and P70sk. Conclusions KD containing MCFAs showed better effects on the mTOR pathway and anti-inflammation than that without MCFAs.


Sign in / Sign up

Export Citation Format

Share Document