scholarly journals The Divergent Immunomodulatory Effects of Short Chain Fatty Acids and Medium Chain Fatty Acids

2021 ◽  
Vol 22 (12) ◽  
pp. 6453
Author(s):  
Qi Hui Sam ◽  
Hua Ling ◽  
Wen Shan Yew ◽  
Zhaohong Tan ◽  
Sharada Ravikumar ◽  
...  

Fatty acids are derived from diet and fermentative processes by the intestinal flora. Two to five carbon chain fatty acids, termed short chain fatty acids (SCFA) are increasingly recognized to play a role in intestinal homeostasis. However, the characteristics of slightly longer 6 to 10 carbon, medium chain fatty acids (MCFA), derived primarily from diet, are less understood. Here, we demonstrated that SCFA and MCFA have divergent immunomodulatory propensities. SCFA down-attenuated host pro-inflammatory IL-1β, IL-6, and TNFα response predominantly through the TLR4 pathway, whereas MCFA augmented inflammation through TLR2. Butyric (C4) and decanoic (C10) acid displayed most potent modulatory effects within the SCFA and MCFA, respectively. Reduction in TRAF3, IRF3 and TRAF6 expression were observed with butyric acid. Decanoic acid induced up-regulation of GPR84 and PPARγ and altered HIF-1α/HIF-2α ratio. These variant immune characteristics of the fatty acids which differ by just several carbon atoms may be attributable to their origins, with SCFA being primarily endogenous and playing a physiological role, and MCFA exogenously from the diet.

2018 ◽  
Vol 2 (2) ◽  
pp. 372-380 ◽  
Author(s):  
M. Venkateswar Reddy ◽  
S. Venkata Mohan ◽  
Young-Cheol Chang

Chain elongation is the process by which bacteria convert ethanol and short chain fatty acids (SCFA) into medium chain fatty acids (MCFA).


2001 ◽  
Vol 120 (5) ◽  
pp. 1152-1161 ◽  
Author(s):  
Jimmy R. Jørgensen ◽  
Mark D. Fitch ◽  
Per B. Mortensen ◽  
Sharon E. Fleming

2020 ◽  
Vol 11 (2) ◽  
pp. 1869-1880 ◽  
Author(s):  
Xinyue Dai ◽  
Tinglan Yuan ◽  
Xinghe Zhang ◽  
Qin Zhou ◽  
Huiya Bi ◽  
...  

Short-chain fatty acids and medium-chain fatty acids (4:0, 6:0 and 8:0) are naturally occurring in human milk triacylglycerol and are present in highest amounts in mature full-term infant milk (1.47 ± 0.66 mg g−1 fat).


1993 ◽  
Vol 69 (2) ◽  
pp. 431-442 ◽  
Author(s):  
E. Guillot ◽  
P. Vaugelade ◽  
P. Lemarchali ◽  
A. Re Rat

In order to study the rate of intestinal absorption and hepatic uptake of medium-chain fatty acids (MCFA), six growing pigs, mean body weight 65 kg, were fitted with a permanent fistula in the duodenum and with three catheters in the portal vein, carotid artery and hepatic vein respectively. Two electromagnetic flow probes were also set up, one around the portal vein and one around the hepatic artery. A mixture of octanoic and decanoic acids, esterified as medium-chain triacylglycerols, together with maltose dextrine and a nitrogenous fraction was continuously infused for 1 h into the duodenum. Samples of blood were withdrawn from the three vessels at regular intervals for 12 h and further analysed for their non-esterified octanoic and decanoic acid contents. The concentration of non-esterified octanoic and decanoic acids in the portal blood rose sharply after the beginning of each infusion and showed a biphasic time-course with two maximum values, one after 15 min and a later one between 75 and 90 min. Only 65 % of octanoic acid infused into the duodenum and 54 % of decanoic acid were recovered in the portal flow throughout each experiment. The amounts of non-esterified MCFA taken up per h by the liver were close to those absorbed from the gut via the portal vein within the same periods of time, showing that the liver is the main site of utilization of MCFA in pigs. These results have been discussed with a special emphasis laid on the possible mechanisms of the biphasic time-course of MCFA absorption and the incomplete recovery in the portal blood of the infused fatty acids.


2010 ◽  
Vol 298 (1) ◽  
pp. C124-C131 ◽  
Author(s):  
Michael J. Coady ◽  
Bernadette Wallendorff ◽  
Francis Bourgeois ◽  
Jean-Yves Lapointe

SMCT1 is a Na-coupled cotransporter of short chain monocarboxylates, which is expressed in the apical membrane of diverse epithelia such as colon, renal cortex, and thyroid. We previously reported that SMCT1 cotransport was reduced by extracellular Cl− replacement with cyclamate− and that the protein exhibited an ostensible anionic leak current. In this paper, we have revisited the interaction between small monovalent anions and SMCT cotransport and leak currents. We found that the apparent Cl− dependence of cotransport was due to inhibition of this protein by the replacement anion cyclamate, whereas several other replacement anions function as substrates for SMCT1; a suitable replacement anion (MES−) was identified. The observed outward leak currents represented anionic influx and favored larger anions (NO3−>I−>Br−>Cl−); currents in excess of 1 μA (at +50 mV) could be observed and exhibited a quasilinear relationship with anion concentrations up to 100 mM. Application of 25 mM bicarbonate did not produce measurable leak currents. The leak current displayed outward rectification, which disappeared when external Na+ was replaced by N-methyl-d-glucamine+. More precisely, external Na+ blocked the leak current in both directions, but its Ki value rose rapidly when membrane potential became positive. Thus SMCT1 possesses a anionic leak current that becomes significant whenever external Na+ concentration is reduced. The presence of this leak current may represent a second function for SMCT1 in addition to cotransporting short chain fatty acids, and future experiments will determine whether this function serves a physiological role in tissues where SMCT1 is expressed.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Salina Moon ◽  
John J. Tsay ◽  
Heather Lampert ◽  
Zaipul I. Md Dom ◽  
Aleksandar D. Kostic ◽  
...  

AbstractA substantial number of subjects with Type 1 Diabetes (T1D) of long duration never develop albuminuria or renal function impairment, yet the underlying protective mechanisms remain unknown. Therefore, our study included 308 Joslin Kidney Study subjects who had T1D of long duration (median: 24 years), maintained normal renal function and had either normoalbuminuria or a broad range of albuminuria within the 2 years preceding the metabolomic determinations. Serum samples were subjected to global metabolomic profiling. 352 metabolites were detected in at least 80% of the study population. In the logistic analyses adjusted for multiple testing (Bonferroni corrected α = 0.000028), we identified 38 metabolites associated with persistent normoalbuminuria independently from clinical covariates. Protective metabolites were enriched in Medium Chain Fatty Acids (MCFAs) and in Short Chain Fatty Acids (SCFAs) and particularly involved odd-numbered and dicarboxylate Fatty Acids. One quartile change of nonanoate, the top protective MCFA, was associated with high odds of having persistent normoalbuminuria (OR (95% CI) 0.14 (0.09, 0.23); p < 10–12). Multivariable Random Forest analysis concordantly indicated to MCFAs as effective classifiers. Associations of the relevant Fatty Acids with albuminuria seemed to parallel associations with tubular biomarkers. Our findings suggest that MCFAs and SCFAs contribute to the metabolic processes underlying protection against albuminuria development in T1D that are independent from mechanisms associated with changes in renal function.


2021 ◽  
Author(s):  
Kalynne R Green ◽  
Kearney T. W. Gunsalus ◽  
Magdia De Jesus

The medium-chain fatty acids, octanoic and decanoic acid, found in coconut oil, were fungistatic and decanoic acid was fungicidal against a panel of Candida auris strains, during both planktonic and biofilm growth. The strains were from all four major geographic clades, and some were resistant to several classes of antifungal drugs. These compounds are safe, natural products and could provide a new strategy for skin decolonization and environmental decontamination.


2011 ◽  
Vol 12 (1) ◽  
pp. 83-93 ◽  
Author(s):  
J. Zentek ◽  
S. Buchheit-Renko ◽  
F. Ferrara ◽  
W. Vahjen ◽  
A. G. Van Kessel ◽  
...  

AbstractMedium-chain fatty acids (MCFAs) are found at higher levels in milk lipids of many animal species and in the oil fraction of several plants, including coconuts, palm kernels and certainCupheaspecies. Medium-chain triglycerides (MCTs) and fatty acids are efficiently absorbed and metabolized and are therefore used for piglet nutrition. They may provide instant energy and also have physiological benefits beyond their energetic value contributing to several findings of improved performance in piglet-feeding trials. MCTs are effectively hydrolyzed by gastric and pancreatic lipases in the newborn and suckling young, allowing rapid provision of energy for both enterocytes and intermediary hepatic metabolism. MCFAs affect the composition of the intestinal microbiota and have inhibitory effects on bacterial concentrations in the digesta, mainly onSalmonellaand coliforms. However, most studies have been performedin vitroup to now andin vivodata in pigs are still scarce. Effects on the gut-associated and general immune function have been described in several animal species, but they have been less studied in pigs. The addition of up to 8% of a non-esterified MCFA mixture in feed has been described, but due to the sensory properties this can have a negative impact on feed intake. This may be overcome by using MCTs, allowing dietary inclusion rates up to 15%. Feeding sows with diets containing 15% MCTs resulted in a lower mortality of newborns and better development, particularly of underweight piglets. In conclusion, MCFAs and MCTs offer advantages for the improvement of energy supply and performance of piglets and may stabilize the intestinal microbiota, expanding the spectrum of feed additives supporting piglet health in the post-weaning period.


Sign in / Sign up

Export Citation Format

Share Document