scholarly journals Development of a stable transgenic Theileria equi parasite expressing an enhanced green fluorescent protein/blasticidin S deaminase

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bumduuren Tuvshintulga ◽  
Arifin Budiman Nugraha ◽  
Tomoka Mizutani ◽  
Mingming Liu ◽  
Takahiro Ishizaki ◽  
...  

AbstractTheileria equi, an intraerythrocytic protozoan parasite, causes equine piroplasmosis, a disease which negatively impacts the global horse industry. Genetic manipulation is one of the research tools under development as a control method for protozoan parasites, but this technique needs to be established for T. equi. Herein, we report on the first development of a stable transgenic T. equi line expressing enhanced green fluorescent protein/blasticidin S deaminase (eGFP/BSD). To express the exogenous fusion gene in T. equi, regulatory regions of the elongation factor-1 alpha (ef-1α) gene were identified in T. equi. An eGFP/BSD-expression cassette containing the ef-1α gene promoter and terminator regions was constructed and integrated into the T. equi genome. On day 9 post-transfection, blasticidin-resistant T. equi emerged. In the clonal line of T. equi obtained by limiting dilution, integration of the eGFP/BSD-expression cassette was confirmed in the designated B-locus of the ef-1α gene via PCR and Southern blot analyses. Parasitaemia dynamics between the transgenic and parental T. equi lines were comparable in vitro. The eGFP/BSD-expressing transgenic T. equi and the methodology used to generate it offer new opportunities for better understanding of T. equi biology, with the add-on possibility of discovering effective control methods against equine piroplasmosis.

Endocrinology ◽  
2005 ◽  
Vol 146 (1) ◽  
pp. 406-413 ◽  
Author(s):  
Yoichi Ueta ◽  
Hiroaki Fujihara ◽  
Ryota Serino ◽  
Govindan Dayanithi ◽  
Hitoshi Ozawa ◽  
...  

We have generated transgenic rats expressing an arginine vasopressin (AVP)-enhanced green fluorescent protein (eGFP) fusion gene. The expression of the eGFP gene and strong fluorescence were observed in the supraoptic nucleus (SON), the paraventricular nucleus (PVN), and the suprachiasmatic nucleus (SCN) in transgenic rats. The hypothalamo-neurohypophyseal tract, isolated SON neurons, and isolated axon terminals in the neurohypophysis also showed robust eGFP fluorescence. Water deprivation for 2 d increased the fluorescence of the eGFP in the SON and the PVN but not the SCN. The whole-cell patch-clamp technique was then used to record the electrical activities specifically identifying eGFP-expressing SON, PVN, and SCN AVP neurons in in vitro brain slice preparations. The AVP-eGFP transgenic rats are a unique new tool with which to study the physiological role of AVP-secreting neurons in the central nervous system and the dynamics of the regulation of AVP secretion in the living neurons and their axon terminals.


2006 ◽  
Vol 14 (21) ◽  
pp. 9815 ◽  
Author(s):  
Alberto Diaspro ◽  
Silke Krol ◽  
Barbara Campanini ◽  
Fabio Cannone ◽  
Giuseppe Chirico

Viruses ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 632
Author(s):  
Yingyun Cai ◽  
Shuiqing Yu ◽  
Ying Fang ◽  
Laura Bollinger ◽  
Yanhua Li ◽  
...  

Simian hemorrhagic fever virus (SHFV) causes acute, lethal disease in macaques. We developed a single-plasmid cDNA-launch infectious clone of SHFV (rSHFV) and modified the clone to rescue an enhanced green fluorescent protein-expressing rSHFV-eGFP that can be used for rapid and quantitative detection of infection. SHFV has a narrow cell tropism in vitro, with only the grivet MA-104 cell line and a few other grivet cell lines being susceptible to virion entry and permissive to infection. Using rSHFV-eGFP, we demonstrate that one cricetid rodent cell line and three ape cell lines also fully support SHFV replication, whereas 55 human cell lines, 11 bat cell lines, and three rodent cells do not. Interestingly, some human and other mammalian cell lines apparently resistant to SHFV infection are permissive after transfection with the rSHFV-eGFP cDNA-launch plasmid. To further demonstrate the investigative potential of the infectious clone system, we introduced stop codons into eight viral open reading frames (ORFs). This approach suggested that at least one ORF, ORF 2b’, is dispensable for SHFV in vitro replication. Our proof-of-principle experiments indicated that rSHFV-eGFP is a useful tool for illuminating the understudied molecular biology of SHFV.


Sign in / Sign up

Export Citation Format

Share Document