scholarly journals Structural and physical properties of 99 complex bulk chalcogenides crystals using first-principles calculations

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Sahib Hasan ◽  
Khagendra Baral ◽  
Neng Li ◽  
Wai-Yim Ching

AbstractChalcogenide semiconductors and glasses have many applications in the civil and military fields, especially in relation to their electronic, optical and mechanical properties for energy conversion and in enviormental materials. However, they are much less systemically studied and their fundamental physical properties for a large class chalcogenide semiconductors are rather scattered and incomplete. Here, we present a detailed study using well defined first-principles calculations on the electronic structure, interatomic bonding, optical, and mechanical properties for 99 bulk chalcogenides including thirteen of these crytals which have never been calculated. Due to their unique composition and structures, these 99 bulk chalcogenides are divided into two main groups. The first group contains 54 quaternary crystals with the structure composition (A2BCQ4) (A = Ag, Cu; B = Zn, Cd, Hg, Mg, Sr, Ba; C = Si, Ge, Sn; Q = S, Se, Te), while the second group contains scattered ternary and quaternary chalcogenide crystals with a more diverse composition (AxByCzQn) (A = Ag, Cu, Ba, Cs, Li, Tl, K, Lu, Sr; B = Zn, Cd, Hg, Al, Ga, In, P, As, La, Lu, Pb, Cu, Ag; C = Si, Ge, Sn, As, Sb, Bi, Zr, Hf, Ga, In; Q = S, Se, Te; $$\hbox {x} = 1$$ x = 1 , 2, 3; $$\hbox {y} = 0$$ y = 0 , 1, 2, 5; $$\hbox {z} = 0$$ z = 0 , 1, 2 and $$\hbox {n} = 3$$ n = 3 , 4, 5, 6, 9). Moreover, the total bond order density (TBOD) is used as a single quantum mechanical metric to characterize the internal cohesion of these crystals enabling us to correlate them with the calculated properties, especially their mechanical properties. This work provides a very large database for bulk chalcogenides crucial for the future theoretical and experimental studies, opening opportunities for study the properties and potential application of a wide variety of chalcogenides.

2019 ◽  
Vol 21 (20) ◽  
pp. 10552-10566 ◽  
Author(s):  
Asadollah Bafekry ◽  
Mitra Ghergherehchi ◽  
Saber Farjami Shayesteh

Defects are inevitably present in materials, and their existence in a material strongly affects its fundamental physical properties.


Nanoscale ◽  
2021 ◽  
Author(s):  
Mingyu Gong ◽  
Wenqian Wu ◽  
Dongyue Xie ◽  
Nicholas A Richter ◽  
Qiang Li ◽  
...  

Recent experimental studies show that co-sputtering solutes with Al together can refine columnar grain size around few tens nanometers and promote formation and enhance the stability of planar defects such...


2019 ◽  
Vol 13 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Natarajan Kishore ◽  
Veerappan Nagarajan ◽  
Ramanathan Chandiramouli

First-principles calculations for CdSe and CdTe nanostructures were carried out to study their mechanical properties and band structure under the uniaxial pressure range of 0 to 50GPa. It was presumed that the CdSe and CdTe nanostructures exist in the zinc-blende phase under high pressure. The mechanical properties, such as elastic constants, bulk modulus, shear modulus and Young?s modulus, were explored. Furthermore, Cauchy pressure, Poisson?s ratio and Pugh?s criterion were studied under high pressure for both CdSe and CdTe nanostructures, and the results show that they exhibit ductile property. The band structure studies of CdSe and CdTe were also investigated. The findings show that the mechanical properties and the band structures of CdSe and CdTe can be tailored with high pressure.


Sign in / Sign up

Export Citation Format

Share Document