scholarly journals Mechanical properties and band structure of CdSe and CdTe nanostructures at high pressure - a first-principles study

2019 ◽  
Vol 13 (2) ◽  
pp. 124-131 ◽  
Author(s):  
Natarajan Kishore ◽  
Veerappan Nagarajan ◽  
Ramanathan Chandiramouli

First-principles calculations for CdSe and CdTe nanostructures were carried out to study their mechanical properties and band structure under the uniaxial pressure range of 0 to 50GPa. It was presumed that the CdSe and CdTe nanostructures exist in the zinc-blende phase under high pressure. The mechanical properties, such as elastic constants, bulk modulus, shear modulus and Young?s modulus, were explored. Furthermore, Cauchy pressure, Poisson?s ratio and Pugh?s criterion were studied under high pressure for both CdSe and CdTe nanostructures, and the results show that they exhibit ductile property. The band structure studies of CdSe and CdTe were also investigated. The findings show that the mechanical properties and the band structures of CdSe and CdTe can be tailored with high pressure.

2014 ◽  
Vol 1047 ◽  
pp. 27-34 ◽  
Author(s):  
Bushra Fatima ◽  
Sunil Singh Chouhan ◽  
Nikita Acharya ◽  
S.P. Sanyal

Systematic first principles calculations have been carried out to study the structural, electronic, elastic and mechanical properties of ScNi, ScPd and ScPt using FP-LAPW method within GGA. The ground state properties such as lattice constant, bulk modulus and first order pressure derivates of bulk modulus, were evaluated. The electronic and bonding patterns of these compounds have been analysed quantitatively from band structure and Fermi surfaces. It is clear from band structures that these compounds are metallic in nature. Ductility for these compounds is analysed by using Pugh’s criteria, Cauchy pressure (C12–C44) and Frantsevich rule. Amongst all these Sc compounds, ScNi is found to be most ductile due to the presence of strong metallic bonding.


2014 ◽  
Vol 852 ◽  
pp. 198-202
Author(s):  
Shuo Huang ◽  
Chuan Hui Zhang ◽  
Rui Zi Li ◽  
Jing Sun ◽  
Jiang Shen

The structural and elastic properties of B2 ScAl doped with Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag and Cd elements are studied by using first-principles calculations. The calculated elastic coefficients of pure ScAl are consistent with other theoretical results. The results of elastic constants indicate that all the ScAl-based alloys discussed are mechanically stable. The bulk modulusB, shear modulusG, Youngs modulusY, Pugh ratioB/Gand Cauchy pressure (C12-C44) are investigated. It is found that the addition of Ru that prefers Al site in ScAl can increase the stiffness of ScAl and improve its ductility.


2010 ◽  
Vol 24 (24) ◽  
pp. 4851-4859
Author(s):  
KAIHUA HE ◽  
GUANG ZHENG ◽  
GANG CHEN ◽  
QILI CHEN ◽  
MIAO WAN ◽  
...  

The structural and electronic properties of BN(5, 5) and C(5, 5) nanotubes under pressure are studied by using first principles calculations. In our study range, BN(5, 5) undergoes obvious elliptical distortion, while for C(5, 5) the cross section first becomes an ellipse and then, under further pressure, is flattened. The band gap of BN(5, 5) decreases with increasing pressure, which is inverse to that of zinc blende BN, whereas for C(5, 5) the metallicity is always preserved under high pressure. The population of charge density indicates that intertube bonding is formed under pressure. We also find that BN(5, 5) may collapse, and a new polymer material based on C(5, 5) is formed by applying pressure.


2019 ◽  
Vol 33 (18) ◽  
pp. 1950193
Author(s):  
Yingjiao Zhou ◽  
Qun Wei ◽  
Bing Wei ◽  
Ruike Yang ◽  
Ke Cheng ◽  
...  

The elastic constants and phonon dispersion of metallic C[Formula: see text] are calculated by first-principles calculations. The results show that the metallic C[Formula: see text] is mechanically and dynamically stable under high pressure. The variations of G/B ratio, Poisson’s ratio, elastic anisotropy, acoustic velocity and Debye temperature at the pressure range from 0 GPa to 100 GPa are analyzed. The results reveal that by adjusting the pressures the elastic anisotropy and thermodynamic properties could be improved for better applicability.


2020 ◽  
Vol 22 (9) ◽  
pp. 5018-5023 ◽  
Author(s):  
Weiguo Sun ◽  
Xiaoyu Kuang ◽  
Hao Liang ◽  
Xinxin Xia ◽  
Zhengang Zhang ◽  
...  

The mechanical strength of ceramic material TaC can be described well with atomistic simulations if realistic deformation models are considered.


2013 ◽  
Vol 79 ◽  
pp. 456-462 ◽  
Author(s):  
Jiaqian Qin ◽  
Xinyu Zhang ◽  
Yanan Xue ◽  
Xinting Li ◽  
Mingzhen Ma ◽  
...  

2016 ◽  
Vol 46 (2) ◽  
pp. 213-219 ◽  
Author(s):  
Zhen Jiao ◽  
Qi-Jun Liu ◽  
Fu-Sheng Liu ◽  
Wen-Peng Wang ◽  
Yi-Gao Wang ◽  
...  

2015 ◽  
Vol 29 (04) ◽  
pp. 1550009 ◽  
Author(s):  
Zhu Ming ◽  
Ke-Hong Wang

The structural stability, electronic, and mechanical properties of chromium nitride ( CrN ) have been investigated by first-principles calculations within the generalized gradient approximation (GGA). Six different crystal structures of CrN are considered, namely NaCl , CsCl , zinc blende, WC, wurtzite and NiAs . Among the considered structures, NiAs -type structure is energetically more stable than others. The electronic band structure and density of states calculations reveal that these materials exhibit metallic nature. The calculated elastic constants indicate these compounds are mechanically stable in all the considered sturctures. In addition, the related mechanical properties such as bulk modulus, Young's modulus, shear modulus and the Poisson's ratio are also computed.


Sign in / Sign up

Export Citation Format

Share Document