scholarly journals Stress distribution of different lumbar posterior pedicle screw insertion techniques: a combination study of finite element analysis and biomechanical test

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mingzhi Song ◽  
Kebin Sun ◽  
Zhonghai Li ◽  
Junwei Zong ◽  
Xiliang Tian ◽  
...  

AbstractAt present, the pedicle screw is the most commonly used internal fixation device. However, there are many kinds of common posterior pedicle screw insertion techniques performed to reconstruct the lumbar stability. Therefore, spinal surgeons often face a difficult choice. The stress distribution of internal fixation system is an important index for evaluating safety. Unfortunately, little had been known about the difference of stress distribution of screw-rod systems that established by Roy-Camille, Magerl and Krag insertion techniques. Here, combination of finite element analysis and model measurement research was adopted to evaluate the difference of stress. Following different pedicle screw insertion techniques, three lumbar posterior surgery models were established after modeling and validation of the L1–S1 vertebrae finite element model. By analyzing the data, we found that stress concentration phenomenon was in all the postoperative models. Roy-Camille and Magerl insertion techniques led to the great stress on screw-rod systems. Then, fresh frozen calf spines were selected as a model for subsequent measurements. Fitted with a specially designed test pedicle screw, L5–L6 vertebrae were selected to repeat and verify the results of the finite element analysis. With the aid of universal testing machine and digital torque wrench, models simulated flexion, extension, lateral bending and rotation. Finally, the strain value was captured by the strain gauge and was then calculated as the stress value. Krag and Magerl were found to be the safer choice for pedicle screw insertion. Overall, our combination method obtained the reliable result that Krag insertion technique was the safer approach for pedicle screw implantation due to its relatively dispersive stress. Therefore, without the consideration of screw size, pedicle fill, bone density, and bone structures, we recommend the Krag insertion technique as the first choice to reconstruction of lumbar stability. Additionally, the combination method of finite element analysis and strain gauge measurement can provide a feasible way to study the stress distribution of spinal internal fixation.

2008 ◽  
Vol 381-382 ◽  
pp. 591-594
Author(s):  
Sung Min Kim ◽  
I.C. Yang ◽  
D.K. Kim ◽  
Ha Suk Bae

The effect of design features of an internal spinal fixator under loading is critical to understanding of interaction between fixator and instrumented spine. In this study, we performed finite element analysis for spinal pedicle screw installed in the lumbar spine. The purpose of this study is to model and simulate the newly designed spinal pedicle screw. The deformation and stress of the screw are analyzed for the tightening process and loading process simulating the condition when it is installed in the human body as described in the ASTM F1717 procedure. We expected this study is to derive reliable results for developing a new model by analysis of design variables and fatigue behavior.


2021 ◽  
Vol 11 (3) ◽  
pp. 1220
Author(s):  
Azeem Ul Yaqin Syed ◽  
Dinesh Rokaya ◽  
Shirin Shahrbaf ◽  
Nicolas Martin

The effect of a restored machined hybrid dental ceramic crown–tooth complex is not well understood. This study was conducted to determine the effect of the stress state of the machined hybrid dental ceramic crown using three-dimensional finite element analysis. Human premolars were prepared to receive full coverage crowns and restored with machined hybrid dental ceramic crowns using the resin cement. Then, the teeth were digitized using micro-computed tomography and the teeth were scanned with an optical intraoral scanner using an intraoral scanner. Three-dimensional digital models were generated using an interactive image processing software for the restored tooth complex. The generated models were imported into a finite element analysis software with all degrees of freedom concentrated on the outer surface of the root of the crown–tooth complex. To simulate average occlusal load subjected on a premolar a total load of 300 N was applied, 150 N at a buccal incline of the palatal cusp, and palatal incline of the buccal cusp. The von Mises stresses were calculated for the crown–tooth complex under simulated load application was determined. Three-dimensional finite element analysis showed that the stress distribution was more in the dentine and least in the cement. For the cement layer, the stresses were more concentrated on the buccal cusp tip. In dentine, stress was more on the cusp tips and coronal 1/3 of the root surface. The conventional crown preparation is a suitable option for machined polymer crowns with less stress distribution within the crown–tooth complex and can be a good aesthetic replacement in the posterior region. Enamic crowns are a good viable option in the posterior region.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1654
Author(s):  
Poojitha Vurtur Badarinath ◽  
Maria Chierichetti ◽  
Fatemeh Davoudi Kakhki

Current maintenance intervals of mechanical systems are scheduled a priori based on the life of the system, resulting in expensive maintenance scheduling, and often undermining the safety of passengers. Going forward, the actual usage of a vehicle will be used to predict stresses in its structure, and therefore, to define a specific maintenance scheduling. Machine learning (ML) algorithms can be used to map a reduced set of data coming from real-time measurements of a structure into a detailed/high-fidelity finite element analysis (FEA) model of the same system. As a result, the FEA-based ML approach will directly estimate the stress distribution over the entire system during operations, thus improving the ability to define ad-hoc, safe, and efficient maintenance procedures. The paper initially presents a review of the current state-of-the-art of ML methods applied to finite elements. A surrogate finite element approach based on ML algorithms is also proposed to estimate the time-varying response of a one-dimensional beam. Several ML regression models, such as decision trees and artificial neural networks, have been developed, and their performance is compared for direct estimation of the stress distribution over a beam structure. The surrogate finite element models based on ML algorithms are able to estimate the response of the beam accurately, with artificial neural networks providing more accurate results.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Xiaodong He ◽  
Christopher-Denny Matte ◽  
Tsz-Ho Kwok

AbstractThe paper presents a novel manufacturing approach to fabricate origami based on 3D printing utilizing digital light processing. Specifically, we propose to leave part of the model uncured during the printing step, and then cure it in the post-processing step to set the shape in a folded configuration. While the cured regions in the first step try to regain their unfolded shape, the regions cured in the second step attempt to keep their folded shape. As a result, the final shape is obtained when both regions’ stresses reach equilibrium. Finite element analysis is performed in ANSYS to obtain the stress distribution on common hinge designs, demonstrating that the square-hinge has a lower maximum principal stress than elliptical and triangle hinges. Based on the square-hinge and rectangular cavity, two variables—the hinge width and the cavity height—are selected as principal variables to construct an empirical model with the final folding angle. In the end, experimental verification shows that the developed method is valid and reliable to realize the proposed deformation and 3D development of 2D hinges.


Sign in / Sign up

Export Citation Format

Share Document