scholarly journals Modular network mechanism of CCN1-associated resistance to HSV-1-derived oncolytic immunovirotherapies for glioblastomas

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dileep D. Monie ◽  
Cristina Correia ◽  
Cheng Zhang ◽  
Choong Yong Ung ◽  
Richard G. Vile ◽  
...  

AbstractGlioblastomas (GBMs) are the most common and lethal primary brain malignancy in adults. Oncolytic virus (OV) immunotherapies selectively kill GBM cells in a manner that elicits antitumor immunity. Cellular communication network factor 1 (CCN1), a protein found in most GBM microenvironments, expression predicts resistance to OVs, particularly herpes simplex virus type 1 (HSV-1). This study aims to understand how extracellular CCN1 alters the GBM intracellular state to confer OV resistance. Protein–protein interaction network information flow analyses of LN229 human GBM transcriptomes identified 39 novel nodes and 12 binary edges dominating flow in CCN1high cells versus controls. Virus response programs, notably against HSV-1, and cytokine-mediated signaling pathways are highly enriched. Our results suggest that CCN1high states exploit IDH1 and TP53, and increase dependency on RPL6, HUWE1, and COPS5. To validate, we reproduce our findings in 65 other GBM cell line (CCLE) and 174 clinical GBM patient sample (TCGA) datasets. We conclude through our generalized network modeling and system level analysis that CCN1 signals via several innate immune pathways in GBM to inhibit HSV-1 OVs before transduction. Interventions disrupting this network may overcome immunovirotherapy resistance.

2020 ◽  
Author(s):  
Xianyi Lian ◽  
Xiaodi Yang ◽  
Jiqi Shao ◽  
Fujun Hou ◽  
Shiping Yang ◽  
...  

Abstract Background: Herpes simplex virus type 1 (HSV-1) is a ubiquitous infectious pathogen that widely affects human health. To decipher the complicated human-HSV-1 interactions, a comprehensive protein-protein interaction (PPI) network between human and HSV-1 is highly demanded. Results: To complement experimental identification of human-HSV-1 PPIs, we developed an integrative strategy to predict proteome-wide PPIs between human and HSV-1. For each human-HSV-1 protein pair, four popular PPI inference methods, including interolog mapping, the domain-domain interaction-based method, domain-motif interaction-based method and machine learning-based method, were optimally implemented and employed to generate four interaction probability scores, and then these four scores were further integrated into a final probability score. As a result, a comprehensive high-confidence PPI interaction network between human and HSV-1 was established, which covers 10,432 interactions between 4,546 human proteins and 72 HSV-1 proteins. Functional and network analyses of the HSV-1 targeting proteins in the context of human interactome can recapitulate the known knowledge regarding the HSV-1 replication cycle, supporting the overall reliability of the predicted PPI network. Considering that HSV-1 infections are implicated in encephalitis and neurodegenerative diseases, we focused on exploring the biological significance of brain-specific human-HSV-1 PPIs. In particular, the predicted interactions between HSV-1 proteins and Alzheimer's-disease-related proteins were intensively investigated. Conclusions: The current work can provide testable hypotheses to assist mechanistic understanding of the human-HSV-1 relationship as well as the discovery of anti-HSV-1 pharmaceutical targets. To make the predicted PPI network and the datasets freely accessible to the scientific community, a user-friendly database browser has been released at http://www.zzdlab.com/HintHSV/index.php. Keywords: Human-virus interaction, Protein-protein interaction, Prediction, Herpes simplex virus type 1, Alzheimer's disease


Viruses ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1148
Author(s):  
Fouad S. El-mayet ◽  
Kelly S. Harrison ◽  
Clinton Jones

Expression of Krüppel-like factor 15 (KLF15), a stress-induced transcription factor, is induced during bovine herpesvirus 1 (BoHV-1) reactivation from latency, and KLF15 stimulates BoHV-1 replication. Transient transfection studies revealed that KLF15 and glucocorticoid receptor (GR) cooperatively transactivate the BoHV-1-immediate-early transcription unit 1 (IEtu1), herpes simplex virus type 1 (HSV-1) infected cell protein 0 (ICP0), and ICP4 promoters. The IEtu1 promoter drives expression of bICP0 and bICP4, two key BoHV-1 transcriptional regulatory proteins. Based on these studies, we hypothesized infection is a stressful stimulus that increases KLF15 expression and enhances productive infection. New studies demonstrated that silencing KLF15 impaired HSV-1 productive infection, and KLF15 steady-state protein levels were increased at late stages of productive infection. KLF15 was primarily localized to the nucleus following infection of cultured cells with HSV-1, but not BoHV-1. When cells were transfected with a KLF15 promoter construct and then infected with HSV-1, promoter activity was significantly increased. The ICP0 gene, and to a lesser extent, bICP0 transactivated the KLF15 promoter in the absence of other viral proteins. In contrast, BoHV-1 or HSV-1 encoded VP16 had no effect on KLF15 promoter activity. Collectively, these studies revealed that HSV-1 and BoHV-1 productive infection increased KLF15 steady-state protein levels, which correlated with increased virus production.


Vaccines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 686
Author(s):  
Simone Agostini ◽  
Roberta Mancuso ◽  
Andrea S. Costa ◽  
Lorenzo A. Citterio ◽  
Franca R. Guerini ◽  
...  

The etiology of Parkinson’s disease (PD), a progressive nervous system disorder that affects movement, is still unknown; both genetic and environmental factor are believed to be involved in onset of the disease and its development. Herpes simplex virus type 1 (HSV-1), in particular, is suspected to have a role in PD. Paired Immunoglobulin-like type 2 receptor alpha (PILRA) is an inhibitory receptor that down-regulates inflammation and is expressed on innate immune cells. The PILRA rs1859788 polymorphism is protective against Alzheimer’s disease, even in relation with HSV-1 antibody titers, but no data are available in PD. We analyzed HSV-1 antibody titers and PILRA rs1859788 in PD (n = 51) and age-and sex-matched healthy controls (HC; n = 73). Results showed that HSV-1, but not cytomegalovirus (CMV) or human herpes virus type 6 (HHV-6) antibody titers were significantly higher in PD compared to HC (p = 0.045). The rs1859788 polymorphism was not differentially distributed between PD and HC, but the minor allele A was more frequently carried by PD (68%) compared to HC (50%) (p = 0.06). Notably, the rs1859788 minor allele A was statically more frequent in male PD (65%) compared to male HC (37%) (p = 0.036). Finally, no relation was found between HSV-1 antibody titers and PILRA genotype. Results herein suggest an involvement of HSV-1 in PD and indicate a possible interaction between PILRA gene polymorphisms and this neuropathology.


2007 ◽  
Vol 81 (18) ◽  
pp. 9653-9664 ◽  
Author(s):  
Satoko Iwahori ◽  
Noriko Shirata ◽  
Yasushi Kawaguchi ◽  
Sandra K. Weller ◽  
Yoshitaka Sato ◽  
...  

ABSTRACT The ataxia telangiectasia-mutated (ATM) protein, a member of the related phosphatidylinositol 3-like kinase family encoded by a gene responsible for the human genetic disorder ataxia telangiectasia, regulates cellular responses to DNA damage and viral infection. It has been previously reported that herpes simplex virus type 1 (HSV-1) infection induces activation of protein kinase activity of ATM and hyperphosphorylation of transcription factor, Sp1. We show that ATM is intimately involved in Sp1 hyperphosphorylation during HSV-1 infection rather than individual HSV-1-encoded protein kinases. In ATM-deficient cells or cells silenced for ATM expression by short hairpin RNA targeting, hyperphosphorylation of Sp1 was prevented even as HSV-1 infection progressed. Mutational analysis of putative ATM phosphorylation sites on Sp1 and immunoblot analysis with phosphopeptide-specific Sp1 antibodies clarified that at least Ser-56 and Ser-101 residues on Sp1 became phosphorylated upon HSV-1 infection. Serine-to-alanine mutations at both sites on Sp1 considerably abolished hyperphosphorylation of Sp1 upon infection. Although ATM phosphorylated Ser-101 but not Ser-56 on Sp1 in vitro, phosphorylation of Sp1 at both sites was not detected at all upon infection in ATM-deficient cells, suggesting that cellular kinase(s) activated by ATM could be involved in phosphorylation at Ser-56. Upon viral infection, Sp1-dependent transcription in ATM expression-silenced cells was almost the same as that in ATM-intact cells, suggesting that ATM-dependent phosphorylation of Sp1 might hardly affect its transcriptional activity during the HSV-1 infection. ATM-dependent Sp1 phosphorylation appears to be a global response to various DNA damage stress including viral DNA replication.


2002 ◽  
Vol 76 (18) ◽  
pp. 9232-9241 ◽  
Author(s):  
John M. Lubinski ◽  
Ming Jiang ◽  
Lauren Hook ◽  
Yueh Chang ◽  
Chad Sarver ◽  
...  

ABSTRACT Herpes simplex virus type 1 (HSV-1) encodes a complement-interacting glycoprotein, gC, and an immunoglobulin G (IgG) Fc binding glycoprotein, gE, that mediate immune evasion by affecting multiple aspects of innate and acquired immunity, including interfering with complement components C1q, C3, C5, and properdin and blocking antibody-dependent cellular cytotoxicity. Previous studies evaluated the individual contributions of gC and gE to immune evasion. Experiments in a murine model that examines the combined effects of gC and gE immune evasion on pathogenesis are now reported. Virulence of wild-type HSV-1 is compared with mutant viruses defective in gC-mediated C3 binding, gE-mediated IgG Fc binding, or both immune evasion activities. Eliminating both activities greatly increased susceptibility of HSV-1 to antibody and complement neutralization in vitro and markedly reduced virulence in vivo as measured by disease scores, virus titers, and mortality. Studies with C3 knockout mice indicated that other activities attributed to these glycoproteins, such as gC-mediated virus attachment to heparan sulfate or gE-mediated cell-to-cell spread, do not account for the reduced virulence of mutant viruses. The results support the importance of gC and gE immune evasion in vivo and suggest potential new targets for prevention and treatment of HSV disease.


2009 ◽  
Vol 84 (4) ◽  
pp. 2110-2121 ◽  
Author(s):  
Ken Sagou ◽  
Masashi Uema ◽  
Yasushi Kawaguchi

ABSTRACT Herpesvirus nucleocapsids assemble in the nucleus and must cross the nuclear membrane for final assembly and maturation to form infectious progeny virions in the cytoplasm. It has been proposed that nucleocapsids enter the perinuclear space by budding through the inner nuclear membrane, and these enveloped nucleocapsids then fuse with the outer nuclear membrane to enter the cytoplasm. Little is known about the mechanism(s) for nuclear egress of herpesvirus nucleocapsids and, in particular, which, if any, cellular proteins are involved in the nuclear egress pathway. UL12 is an alkaline nuclease encoded by herpes simplex virus type 1 (HSV-1) and has been suggested to be involved in viral DNA maturation and nuclear egress of nucleocapsids. Using a live-cell imaging system to study cells infected by a recombinant HSV-1 expressing UL12 fused to a fluorescent protein, we observed the previously unreported nucleolar localization of UL12 in live infected cells and, using coimmunoprecipitation analyses, showed that UL12 formed a complex with nucleolin, a nucleolus marker, in infected cells. Knockdown of nucleolin in HSV-1-infected cells reduced capsid accumulation, as well as the amount of viral DNA resistant to staphylococcal nuclease in the cytoplasm, which represented encapsidated viral DNA, but had little effect on these viral components in the nucleus. These results indicated that nucleolin is a cellular factor required for efficient nuclear egress of HSV-1 nucleocapsids in infected cells.


1979 ◽  
Vol 27 (11) ◽  
pp. 1455-1461 ◽  
Author(s):  
B L Hansen ◽  
G N Hansen ◽  
B F Vestergaard

Subcellular localization of viral antigens was demonstrated during viral morphogenesis using herpes simplex virus type 1 (HSV-1) infected monolayers of rabbit cornea cells. The localization was done by immunoelectron microscopy employing the peroxidase-antiperoxidase (PAP) immunocytochemical technique and the postembedding staining method. The localization of viral antigens was followed at time intervals during infection from 2 to 19 hr. After exposure of sections to either polyspecific antibodies against total HSV-1 antigens or monospecific antibodies against HSV-1 antigen No. 8, specific immunological reaction products were identified both in the cytoplasm and nucleus after 2 hr. The distribution and quantity of reaction products varied in the infected cells during the viral morphogenesis. The present results on the subcellular distribution of the HSV-1 antigens are related to current biochemical findings.


Sign in / Sign up

Export Citation Format

Share Document