scholarly journals Selective control of the contact and transport between droplet pairs by electrowetting-on-dielectric for droplet-array sandwiching technology

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Satoshi Konishi ◽  
Chikara Ohya ◽  
Tatsuhiro Yamada

AbstractMethodological advances in on-chip technology enable high-throughput drug screening, such as droplet-array sandwiching technology. Droplet-array sandwiching technology involves upper and lower substrates with a droplet-array designed for a one-step process. This technology is, however, limited to batch manipulation of the droplet-array. Here, we propose a method for selective control of individual droplets, which allows different conditions for individual droplet pairs. Electrowetting-on-dielectric (EWOD) technology is introduced to control the height of the droplets so that the contact between droplet-pairs can be individually controlled. Circular patterns 4 mm in diameter composed of electrodes for EWOD and hydrophilic–hydrophobic patterns for droplet formation 4 μl in volume were developed. We demonstrate the selective control of the droplet height by EWOD for an applied voltage up to 160 V and selective control of the contact and transport of substances. Presented results will provide useful method for advanced drug screening, including cell-based screening.

2021 ◽  
Author(s):  
Satoshi Konishi ◽  
Chikara Oya ◽  
Tatsuhiro Yamada

Abstract On-chip technology continuously explores and provides novel methods for high-throughput drug screening, such as droplet-array sandwiching technology. Droplet-array sandwiching technology involves upper and lower substrates with a droplet-array designed for a one-step process for drug screening, including cell-based screening. This technology is, however, limited to batch manipulation of the droplet-array. This paper proposes selective control of individual droplets, which allows different conditions for individual droplet pairs. Electrowetting-on-dielectric (EWOD) technology is introduced to control the height of the droplets so that the contact between droplet-pairs can be individually controlled. Circular patterns 4 mm in diameter composed of electrodes for EWOD and hydrophilic-hydrophobic patterns for droplet formation 4 μl in volume were developed. This paper presents and examines the selective control of the droplet height by EWOD for an applied voltage up to 160 V, followed by successful results of selective control of the contact and transport of substances.


Cancers ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 874
Author(s):  
Sreenivasulu Gunti ◽  
Austin T.K. Hoke ◽  
Kenny P. Vu ◽  
Nyall R. London

Techniques to develop three-dimensional cell culture models are rapidly expanding to bridge the gap between conventional cell culture and animal models. Organoid and spheroid cultures have distinct and overlapping purposes and differ in cellular sources and protocol for establishment. Spheroids are of lower complexity structurally but are simple and popular models for drug screening. Organoids histologically and genetically resemble the original tumor from which they were derived. Ease of generation, ability for long-term culture and cryopreservation make organoids suitable for a wide range of applications. Organoids-on-chip models combine organoid methods with powerful designing and fabrication of micro-chip technology. Organoid-chip models can emulate the dynamic microenvironment of tumor pathophysiology as well as tissue–tissue interactions. In this review, we outline different tumor spheroid and organoid models and techniques to establish them. We also discuss the recent advances and applications of tumor organoids with an emphasis on tumor modeling, drug screening, personalized medicine and immunotherapy.


2019 ◽  
Author(s):  
Philip Tatman ◽  
Anthony Fringuello ◽  
Denise Damek ◽  
Samy Youssef ◽  
Randy Jensn ◽  
...  

2019 ◽  
Author(s):  
Michael Gerckens ◽  
Hani Alsafadi ◽  
Darcy Wagner ◽  
Katharina Heinzelmann ◽  
Kenji Schorpp ◽  
...  

2020 ◽  
Author(s):  
S Bhatia ◽  
H Ahlert ◽  
N Dienstbier ◽  
J Schliehe-Diecks ◽  
M Sönnichsen ◽  
...  

Author(s):  
Ш.С. Фахми ◽  
Н.В. Шаталова ◽  
В.В. Вислогузов ◽  
Е.В. Костикова

В данной работе предлагаются математический аппарат и архитектура многопроцессорной транспортной системы на кристалле (МПТСнК). Выполнена программно-аппаратная реализация интеллектуальной системы видеонаблюдения на базе технологии «система на кристалле» и с использованием аппаратного ускорителя известного метода формирования опорных векторов. Архитектура включает в себя сложно-функциональные блоки анализа видеоинформации на базе параллельных алгоритмов нахождения опорных точек изображений и множества элементарных процессоров для выполнения сложных вычислительных процедур алгоритмов анализа с использованием средств проектирования на базе реконфигурируемой системы на кристалле, позволяющей оценить количество аппаратных ресурсов. Предлагаемая архитектура МПТСнК позволяет ускорить обработку и анализ видеоинформации при решении задач обнаружения и распознавания чрезвычайных ситуаций и подозрительных поведений. In this paper, we propose the mathematical apparatus and architecture of a multiprocessor transport system on a chip (MPTSoC). Software and hardware implementation of an intelligent video surveillance system based on the "system on chip" technology and using a hardware accelerator of the well-known method of forming reference vectors. The architecture includes complex functional blocks for analyzing video information based on parallel algorithms for finding image reference points and a set of elementary processors for performing complex computational procedures for algorithmic analysis. using design tools based on a reconfigurable system on chip that allows you to estimate the amount of hardware resources. The proposed MPTSoC architecture makes it possible to speed up the processing and analysis of video information when solving problems of detecting and recognizing emergencies and suspicious behaviors


2019 ◽  
Vol 137 ◽  
pp. 236-254 ◽  
Author(s):  
Nandini Dhiman ◽  
Peter Kingshott ◽  
Huseyin Sumer ◽  
Chandra S. Sharma ◽  
Subha Narayan Rath

2021 ◽  
Vol 11 (7) ◽  
Author(s):  
Ruochen Jia ◽  
Leon Kutzner ◽  
Anna Koren ◽  
Kathrin Runggatscher ◽  
Peter Májek ◽  
...  

AbstractMutations of calreticulin (CALR) are the second most prevalent driver mutations in essential thrombocythemia and primary myelofibrosis. To identify potential targeted therapies for CALR mutated myeloproliferative neoplasms, we searched for small molecules that selectively inhibit the growth of CALR mutated cells using high-throughput drug screening. We investigated 89 172 compounds using isogenic cell lines carrying CALR mutations and identified synthetic lethality with compounds targeting the ATR-CHK1 pathway. The selective inhibitory effect of these compounds was validated in a co-culture assay of CALR mutated and wild-type cells. Of the tested compounds, CHK1 inhibitors potently depleted CALR mutated cells, allowing wild-type cell dominance in the co-culture over time. Neither CALR deficient cells nor JAK2V617F mutated cells showed hypersensitivity to ATR-CHK1 inhibition, thus suggesting specificity for the oncogenic activation by the mutant CALR. CHK1 inhibitors induced replication stress in CALR mutated cells revealed by elevated pan-nuclear staining for γH2AX and hyperphosphorylation of RPA2. This was accompanied by S-phase cell cycle arrest due to incomplete DNA replication. Transcriptomic and phosphoproteomic analyses revealed a replication stress signature caused by oncogenic CALR, suggesting an intrinsic vulnerability to CHK1 perturbation. This study reveals the ATR-CHK1 pathway as a potential therapeutic target in CALR mutated hematopoietic cells.


Sign in / Sign up

Export Citation Format

Share Document