scholarly journals Regulatory properties of vitronectin and its glycosylation in collagen fibril formation and collagen-degrading enzyme cathepsin K activity

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kimie Date ◽  
Hiromi Sakagami ◽  
Kei Yura

AbstractVitronectin (VN) is a glycoprotein found in extracellular matrix and blood. Collagen, a major extracellular matrix component in mammals, is degraded by cathepsin K (CatK), which is essential for bone resorption under acidic conditions. The relationship between VN and cathepsins has been unclear. We discovered that VN promoted collagen fibril formation and inhibited CatK activity, and observed its activation in vitro. VN accelerated collagen fibril formation at neutral pH. Collagen fibers formed with VN were in close contact with each other and appeared as scattered flat masses in scanning electron microscopy images. VN formed collagen fibers with high acid solubility and significantly inhibited CatK; the IC50 was 8.1–16.6 nM and competitive, almost the same as those of human and porcine VNs. VN inhibited the autoprocessing of inactive pro-CatK from active CatK. DeN-glycosylation of VN attenuated the inhibitory effects of CatK and its autoprocessing by VN, but had little effect on acid solubilization of collagen and VN degradation via CatK. CatK inhibition is an attractive treatment approach for osteoporosis and osteoarthritis. These findings suggest that glycosylated VN is a potential biological candidate for CatK inhibition and may help to understand the molecular mechanisms of tissue re-modeling.

1993 ◽  
Vol 268 (26) ◽  
pp. 19826-19832
Author(s):  
J.R. MacBeath ◽  
D.R. Shackleton ◽  
D.J. Hulmes

1978 ◽  
Vol 253 (18) ◽  
pp. 6578-6585 ◽  
Author(s):  
B.R. Williams ◽  
R.A. Gelman ◽  
D.C. Poppke ◽  
K.A. Piez

1993 ◽  
Vol 38 (9) ◽  
pp. 737-743 ◽  
Author(s):  
B.H. Clarkson ◽  
S.P. McCurdy ◽  
D. Gaz ◽  
A.R. Hand

2014 ◽  
Vol 783-786 ◽  
pp. 72-77 ◽  
Author(s):  
Takayoshi Nakano ◽  
Aira Matsugaki ◽  
Takuya Ishimoto ◽  
Mitsuharu Todai ◽  
Ai Serizawa ◽  
...  

Bone microstructure is dominantly composed of anisotropic extracellular matrix (ECM) in which collagen fibers and epitaxially-oriented biological apatite (BAp) crystals are preferentially aligned depending on the bone anatomical position, resulting in exerting appropriate mechanical function. The regenerative bone in bony defects is however produced without the preferential alignment of collagen fibers and the c-axis of BAp crystals, and subsequently reproduced to recover toward intact alignment. Thus, it is necessary to produce the anisotropic bone-mimetic tissue for the quick recovery of original bone tissue and the related mechanical ability in the early stage of bone regeneration. Our group is focusing on the methodology for regulating the arrangement of bone cells, the following secretion of collagen and the self-assembled mineralization by oriented BAp crystallites. Cyclic stretching in vitro to bone cells, principal-stress loading in vivo on scaffolds, step formation by slip traces on Ti single crystal, surface modification by laser induced periodic surface structure (LIPSS), anisotropic collagen substrate with the different degree of orientation, etc. can dominate bone cell arrangement and lead to the construction of the oriented ECM similar to the bone tissue architecture. This suggests that stress/strain loading, surface topography and chemical anisotropy are useful to produce bone-like microstructure in order to promote the regeneration of anisotropic bone tissue and to understand the controlling parameters for anisotropic osteogenesis induction.


2014 ◽  
Author(s):  
◽  
Lana Bruney

Epithelial ovarian cancer (EOC) is one of the most common gynecologic malignancies, generally developing in women over the age of forty. When EOC are diagnosed prior to metastatic dissemination, the overall 5-year survival rate is 92%; however, nearly 85% of women with EOC are diagnosed with metastasis already present, dropping the survival rate to less than 30%. EOC, arises, arguably, from the single layer of cells that cover the ovary or fallopian tube. Metastatic ovarian tumors develop once an epithelial cell transforms, inducing detachment from the primary tumor site. These shed cells travel throughout the peritoneal cavity, escaping anoikis to survive as single cells and multicellular aggregates (MCA), and metastasize intraperitoneally through adhesion to and invasion of the mesothelial cell layer covering the peritoneum, the primary microenvironment for ovarian cancer metastasis. These mesothelial cells lie atop a collagen type I-rich extracellular matrix; subsequent to the initial attachment of ovarian cancer cells, proteolytic activity catalyzes migration through the mesothelial monolayer and promotes invasion of the sub-mesothelial matrix. Elucidating the early molecular mechanisms involved in this metastatic process, specifically the adhesion of EOC cells to mesothelial cells and penetration of the associated sub-mesothelial extracellular matrix, is essential to the development of future therapeutic agents. Enzymatic activity of matrix type 1 metalloproteinase (MT1-MMP), a transmembrane proteinase that degrades interstitial collagen, has been shown to be critical to this process. MT1-MMP activity has been directly implicated in both the invasion of the sub-mesothelial collagen I matrix, and in the shedding of metastatic MCA, but the molecular mechanisms behind these events are not completely understood. Considering the well-established role of MT1-MMP in the EOC metastatic process, identification of the molecules contributing to these pro-metastatic phenotypes is critical to future understanding of EOC metastatic spread. This research investigated the initial adhesive and invasive events of ovarian cancer metastasis, as associated with MT1-MMP proteolytic activity. Specifically, the effect of MT1-MMP activity on ovarian tumor cell ectodomain shedding and the in vitro, relationship between MT1-MMP and a potential phosphorylator, integrin linked kinase (ILK), on adhesion and invasion was assessed. Investigations utilized in vitro models of homotypic and heterotypic cell-cell adhesion, meso-mimetic invasion assays, and ex vivo tissue explants. Results suggest that ILK activity may catalyze phosphorylation of MT1-MMP to promote pro-metastatic events, including strengthening of adhesive contacts, invasion of the collagen-rich sub-mesothelial matrix, and MCA formation. Additionally, MT1-MMP expression may induce MUC16/CA-125 ectodomain shedding, which may then expose integrins at the ovarian tumor cell surface for high affinity cell-cell and cell-ECM binding.


Author(s):  
Wenwu Zhang ◽  
Susan J. Gunst

The smooth muscle of the airways is exposed to continuously changing mechanical forces during normal breathing. The mechanical oscillations that occur during breathing have profound effects on airway tone and airway responsiveness both in experimental animals and humans in vivo and in isolated airway tissues in vitro. Experimental evidence suggests that alterations in the contractile and mechanical properties of airway smooth muscle tissues caused by mechanical perturbations result from adaptive changes in the organization of the cytoskeletal architecture of the smooth muscle cell. The cytoskeleton is a dynamic structure that undergoes rapid reorganization in response to external mechanical and pharmacologic stimuli. Contractile stimulation initiates the assembly of cytoskeletal/extracellular matrix adhesion complex proteins into large macromolecular signaling complexes (adhesomes) that undergo activation to mediate the polymerization and reorganization of a submembranous network of actin filaments at the cortex of the cell. Cortical actin polymerization is catalyzed by Neuronal-Wiskott–Aldrich syndrome protein (N-WASP) and the Arp2/3 complex, which are activated by pathways regulated by paxillin and the small GTPase, cdc42. These processes create a strong and rigid cytoskeletal framework that may serve to strengthen the membrane for the transmission of force generated by the contractile apparatus to the extracellular matrix, and to enable the adaptation of smooth muscle cells to mechanical stresses. This model for the regulation of airway smooth muscle function can provide novel perspectives to explain the normal physiologic behavior of the airways and pathophysiologic properties of the airways in asthma.


Sign in / Sign up

Export Citation Format

Share Document