scholarly journals Corticotropin-releasing factor neurons in the bed nucleus of the stria terminalis exhibit sex-specific pain encoding in mice

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Waylin Yu ◽  
Christina M. Caira ◽  
Natalia del R. Rivera Sanchez ◽  
Garrett A. Moseley ◽  
Thomas L. Kash

AbstractThe bed nucleus of the stria terminalis (BNST) plays an emerging role in pain regulation. Pharmacological studies have found that inhibiting corticotropin-releasing factor (CRF) signaling in the BNST can selectively mitigate the sensory and affective-motivational components of pain. However, mechanistic insight on the source of CRF that drives BNST responses to these harmful experiences remains unknown. In the present study, we used a series of genetic approaches to show that CRF in the BNST is engaged in the processing and modulation of pain. We conducted cell-type specific in vivo calcium imaging in CRF-Cre mice and found robust and synchronized recruitment of BNSTCRF neurons during acute exposures to noxious heat. Distinct patterns of recruitment were observed by sex, as the magnitude and timing of heat responsive activity in BNSTCRF neurons differed for male and female mice. We then used a viral approach in Floxed-CRF mice to selectively reduce CRF expression in the BNST and found it decreased nociceptive sensitivity for both sexes and increased paw attending for females. Together, these findings reveal that CRF in the BNST influences multiple facets of the pain experience to impact the sex-specific expression of pain-related behaviors.

2020 ◽  
Author(s):  
Waylin Yu ◽  
Christina M. Stanhope ◽  
Natalia del R. Rivera Sanchez ◽  
Garrett A. Moseley ◽  
Thomas L. Kash

AbstractThe bed nucleus of the stria terminalis (BNST) plays an emerging yet understudied role in pain. Corticotropin-releasing factor (CRF) is an important source of pain modulation in the BNST, with local pharmacological inhibition of CRF receptors conditionally impacting the sensory and affective-motivational components of pain. Knowledge on how pain dynamically engages CRF neurons in the BNST and is influenced by intra-BNST production of CRF, however, remains unknown. In the present study, we utilized in vivo calcium imaging to show robust and synchronized recruitment of BNSTCRF+ neurons during acute exposure to noxious heat. Distinct patterns of recruitment were observed by sex, as the magnitude and timing of heat responsive activity in BNSTCRF+ neurons differed for male and female mice. We then established the necessity of CRF for intact pain behaviors by genetically deleting Crf in the BNST, which reduced thermal and mechanical nociceptive sensitivity for both sexes, and increased paw attending in female mice, suggesting a divergent role for CRF with respect to active coping responses to pain. Together, these findings demonstrate that CRF in the BNST contributes to multiple facets of the pain experience and may play a key role in the sex-specific expression of pain-related behaviors.


1994 ◽  
Vol 14 (2) ◽  
pp. 871-879
Author(s):  
A Sharma ◽  
R Stein

The insulin gene is expressed exclusively in pancreatic islet beta cells. The principal regulator of insulin gene transcription in the islet is the concentration of circulating glucose. Previous studies have demonstrated that transcription is regulated by the binding of trans-acting factors to specific cis-acting sequences within the 5'-flanking region of the insulin gene. To identify the cis-acting control elements within the rat insulin II gene that are responsible for regulating glucose-stimulated expression in the beta cell, we analyzed the effect of glucose on the in vivo expression of a series of transfected 5'-flanking deletion mutant constructs. We demonstrate that glucose-induced transcription of the rat insulin II gene is mediated by sequences located between -126 and -91 bp relative to the transcription start site. This region contains two cis-acting elements that are essential for directing pancreatic beta-cell-type-specific expression of the rat insulin II gene, the insulin control element (ICE; -100 to -91 bp) and RIPE3b1 (-115 to -107 bp). The gel mobility shift assay was used to determine whether the formation of the ICE- and RIPE3b1-specific factor-DNA element complexes were affected in glucose-treated beta-cell extracts. We found that RIPE3b1 binding activity was selectively induced by about eightfold. In contrast, binding to other insulin cis-acting element sequences like the ICE and RIPE3a2 (-108 to -99 bp) were unaffected by these conditions. The RIPE3b1 binding complex was shown to be distinct from the glucose-inducible factor that binds to an element located between -227 to -206 bp of the human and rat insulin I genes (D. Melloul, Y. Ben-Neriah, and E. Cerasi, Proc. Natl. Acad. Sci. USA 90:3865-3869, 1993). We have also shown that mannose, a sugar that can be metabolized by the beta cell, mimics the effects of glucose in the in vivo transfection assays and the in vitro RIPE3b1 binding assays. These results suggested that the RIPE3b1 transcription factor is a primary regulator of glucose-mediated transcription of the insulin gene. However, we found that mutations in either the ICE or the RIPE3b1 element reduced glucose-responsive expression from transfected 5'-flanking rat insulin II gene constructs. We therefore conclude that glucose-regulated transcription of the insulin gene is mediated by cis-acting elements required for beta-cell-type-specific expression.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Kerstin Camile Creutzberg ◽  
Érika Kestering-Ferreira ◽  
Thiago Wendt Viola ◽  
Luis Eduardo Wearick-Silva ◽  
Rodrigo Orso ◽  
...  

AbstractThe peripartum period is accompanied by numerous physiological and behavioural adaptations organised by the maternal brain. These changes are essential for adequate expression of maternal behaviour, thereby ensuring proper development of the offspring. The corticotropin-releasing factor (CRF) plays a key role in a variety of behaviours accompanying stress, anxiety, and depression. There is also evidence that CRF contributes to maladaptations during the peripartum period. We investigated the effects of CRF in the bed nucleus of the stria terminalis (BNST) of lactating mice during maternal care and analysed locomotor activity and anxiety-like behaviour in the offspring. The BNST has been implicated in anxiety behaviour and regulation of the stress response. The effects of intra-BNST CRF administration were compared with those induced by the limited bedding (LB) procedure, a model that produces altered maternal behaviour. BALB/cJ dams were exposed to five infusions of CRF or saline into the BNST in the first weeks after birth while the LB dams were exposed to limited nesting material from postnatal days (P) 2–9. Maternal behaviour was recorded in intercalated days, from P1-9. Offspring anxiety-like behaviour was assessed during adulthood using the open-field, elevated plus-maze, and light/dark tests. Both intra-BNST CRF and LB exposure produced altered maternal care, represented by decreased arched-back nursing and increased frequency of exits from the nest. These changes in maternal care resulted in robust sex-based differences in the offspring’s behavioural responses during adulthood. Females raised by CRF-infused dams exhibited increased anxiety-like behaviour, whereas males presented a significant decrease in anxiety. On the other hand, both males and females raised by dams exposed to LB showed higher locomotor activity. Our study demonstrates that maternal care is impaired by intra-BNST CRF administrations, and these maladaptations are similar to exposure to adverse early environments. These procedures, however, produce distinct phenotypes in mice during young adulthood and suggest sex-based differences in the susceptibility to poor maternal care.


2001 ◽  
Vol 21 (6) ◽  
pp. 2144-2153 ◽  
Author(s):  
Nabeel Bardeesy ◽  
Boris C. Bastian ◽  
Aram Hezel ◽  
Dan Pinkel ◽  
Ronald A. DePinho ◽  
...  

ABSTRACT The frequent loss of both INK4a and ARF in melanoma raises the question of which INK4a-ARF gene product functions to suppress melanoma genesis in vivo. Moreover, the high incidence of INK4a-ARF inactivation in transformed melanocytes, along with the lack of p53 mutation, implies a cell type-specific role for INK4a-ARF that may not be complemented by other lesions of the RB and p53 pathways. A mouse model of cutaneous melanoma has been generated previously through the combined effects of INK4a Δ2/3 deficiency (null for INK4a and ARF) and melanocyte-specific expression of activated RAS (tyrosinase-driven H-RASV12G, Tyr-RAS). In this study, we made use of this Tyr-RAS allele to determine whether activated RAS can cooperate withp53 loss in melanoma genesis, whether such melanomas are biologically comparable to those arising inINK4a Δ2/3−/− mice, and whether tumor-associated mutations emerge in the p16INK4a-RB pathway in such melanomas. Here, we report that p53inactivation can cooperate with activated RAS to promote the development of cutaneous melanomas that are clinically indistinguishable from those arisen on theINK4a Δ2/3 null background. Genomewide analysis of RAS-induced p53 mutant melanomas by comparative genomic hybridization and candidate gene surveys revealed alterations of key components governing RB-regulated G1/S transition, including c-Myc, cyclin D1, cdc25a, and p21CIP1. Consistent with the profile of c-Myc dysregulation, the reintroduction of p16INK4a profoundly reduced the growth of Tyr-RASINK4a Δ2/3−/− tumor cells but had no effect on tumor cells derived from Tyr-RAS p53 −/−melanomas. Together, these data validate a role for p53inactivation in melanomagenesis and suggest that both the RB and p53 pathways function to suppress melanocyte transformation in vivo in the mouse.


Sign in / Sign up

Export Citation Format

Share Document