scholarly journals Acyclic nucleoside phosphonates with adenine nucleobase inhibit Trypanosoma brucei adenine phosphoribosyltransferase in vitro

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Eva Doleželová ◽  
Tomáš Klejch ◽  
Petr Špaček ◽  
Martina Slapničková ◽  
Luke Guddat ◽  
...  

AbstractAll medically important unicellular protozoans cannot synthesize purines de novo and they entirely rely on the purine salvage pathway (PSP) for their nucleotide generation. Therefore, purine derivatives have been considered as a promising source of anti-parasitic compounds since they can act as inhibitors of the PSP enzymes or as toxic products upon their activation inside of the cell. Here, we characterized a Trypanosoma brucei enzyme involved in the salvage of adenine, the adenine phosphoribosyl transferase (APRT). We showed that its two isoforms (APRT1 and APRT2) localize partly in the cytosol and partly in the glycosomes of the bloodstream form (BSF) of the parasite. RNAi silencing of both APRT enzymes showed no major effect on the growth of BSF parasites unless grown in artificial medium with adenine as sole purine source. To add into the portfolio of inhibitors for various PSP enzymes, we designed three types of acyclic nucleotide analogs as potential APRT inhibitors. Out of fifteen inhibitors, four compounds inhibited the activity of the recombinant APRT1 with Ki in single µM values. The ANP phosphoramidate membrane-permeable prodrugs showed pronounced anti-trypanosomal activity in a cell-based assay, despite the fact that APRT enzymes are dispensable for T. brucei growth in vitro. While this suggests that the tested ANP prodrugs exert their toxicity by other means in T. brucei, the newly designed inhibitors can be further improved and explored to identify their actual target(s).

1987 ◽  
Vol 7 (3) ◽  
pp. 1242-1249
Author(s):  
B Ehlers ◽  
J Czichos ◽  
P Overath

Regulation of variant surface glycoprotein (VSG) mRNA turnover in Trypanosoma brucei was studied in bloodstream forms, in procyclic cells, and during in vitro transformation of bloodstream forms to procyclic cells by approach-to-equilibrium labeling and pulse-chase experiments. Upon initiation of transformation at 27 degrees C in the presence of citrate-cis-aconitate, the half-life of VSG mRNA was reduced from 4.5 h in bloodstream forms to 1.2 h in transforming cells. Concomitantly, an approximately 25-fold decrease in the rate of transcription was observed, resulting in a 100-fold reduction in the steady-state level of de novo-synthesized VSG mRNA. This low level of expression was maintained for at least 7 h, finally decreasing to an undetectable level after 24 h. Transcription of the VSG gene in established procyclic cells was undetectable. For comparison, the turnover of polyadenylated and nonpolyadenylated RNA, beta-tubulin mRNA, and mini-exon-derived RNA (medRNA) was studied. For medRNA, no significant changes in the rate of transcription or stability were observed during differentiation. In contrast, while the rate of transcription of beta-tubulin mRNA in in vitro-cultured bloodstream forms, transforming cells, and established procyclic cells was similar, the half life was four to five times longer in procyclic cells (t1/2, 7 h) than in cultured bloodstream forms (t1/2, 1.4 h) or transforming cells (t1/2, 1.7 h). Inhibition of protein synthesis in bloodstream forms at 37 degrees Celsius caused a dramatic 20-fold decrease in the rate of VSG mRNA synthesis and a 6-fold decrease in half-life to 45 min, while beta-tubulin mRNA was stabilized 2- to 3-fold and mRNA stability remained unaffected. It is postulated that triggering transformation or inhibiting protein synthesis induces changes in the abundance of the same regulatory molecules which effect the shutoff of VSG gene transcription in addition to shortening the half-life of VSG mRNA.


2000 ◽  
Vol 148 (6) ◽  
pp. 1203-1212 ◽  
Author(s):  
Anton Schmitz ◽  
Helga Herrgen ◽  
Alexandra Winkeler ◽  
Volker Herzog

After endocytosis cholera toxin is transported to the endoplasmic reticulum (ER), from where its A1 subunit (CTA1) is assumed to be transferred to the cytosol by an as-yet unknown mechanism. Here, export of CTA1 from the ER to the cytosol was investigated in a cell-free assay using either microsomes loaded with CTA1 by in vitro translation or reconstituted microsomes containing CTA1 purified from V. cholerae. Export of CTA1 from the microsomes was time- and adenosine triphosphate–dependent and required lumenal ER proteins. By coimmunoprecipitation CTA1 was shown to be associated during export with the Sec61p complex, which mediates import of proteins into the ER. Export of CTA1 was inhibited when the Sec61p complexes were blocked by nascent polypeptides arrested during import, demonstrating that the export of CTA1 depended on translocation-competent Sec61p complexes. Export of CTA1 from the reconstituted microsomes indicated the de novo insertion of the toxin into the Sec61p complex from the lumenal side. Our results suggest that Sec61p complex–mediated protein export from the ER is not restricted to ER-associated protein degradation but is also used by bacterial toxins, enabling their entry into the cytosol of the target cell.


2007 ◽  
Vol 52 (1) ◽  
pp. 211-219 ◽  
Author(s):  
Janice R. Sufrin ◽  
Arthur J. Spiess ◽  
Canio J. Marasco ◽  
Donna Rattendi ◽  
Cyrus J. Bacchi

ABSTRACT The purine nucleoside 5′-deoxy-5′-(hydroxyethylthio)-adenosine (HETA) is an analog of the polyamine pathway metabolite 5′-deoxy-5′-(methylthio)-adenosine (MTA). HETA is a lead structure for the ongoing development of selectively targeted trypanocidal agents. Thirteen novel HETA analogs were synthesized and examined for their in vitro trypanocidal activities against bloodstream forms of Trypanosoma brucei brucei LAB 110 EATRO and at least one drug-resistant Trypanosoma brucei rhodesiense clinical isolate. New compounds were also assessed in a cell-free assay for their activities as substrates of trypanosome MTA phosphorylase. The most potent analog in this group was 5′-deoxy-5′-(hydroxyethylthio)-tubercidin, whose in vitro cytotoxicity (50% inhibitory concentration [IC50], 10 nM) is 45 times greater than that of HETA (IC50, 450 nM) against pentamidine-resistant clinical isolate KETRI 269. Structure-activity analyses indicate that the enzymatic cleavage of HETA analogs by trypanosome MTA phosphorylase is not an absolute requirement for trypanocidal activity. This suggests that additional biochemical mechanisms are associated with the trypanocidal effects of HETA and its analogs.


2006 ◽  
Vol 17 (12) ◽  
pp. 5265-5274 ◽  
Author(s):  
Maria Lucia Sampaio Güther ◽  
Sylvia Lee ◽  
Laurence Tetley ◽  
Alvaro Acosta-Serrano ◽  
Michael A.J. Ferguson

The procyclic form of Trypanosoma brucei exists in the midgut of the tsetse fly. The current model of its surface glycocalyx is an array of rod-like procyclin glycoproteins with glycosylphosphatidylinositol (GPI) anchors carrying sialylated poly-N-acetyllactosamine side chains interspersed with smaller sialylated poly-N-acetyllactosamine–containing free GPI glycolipids. Mutants for TbGPI12, deficient in the second step of GPI biosynthesis, were devoid of cell surface procyclins and poly-N-acetyllactosamine–containing free GPI glycolipids. This major disruption to their surface architecture severely impaired their ability to colonize tsetse fly midguts but, surprisingly, had no effect on their morphology and growth characteristics in vitro. Transmission electron microscopy showed that the mutants retained a cell surface glycocalyx. This structure, and the viability of the mutants in vitro, prompted us to look for non-GPI–anchored parasite molecules and/or the adsorption of serum components. Neither were apparent from cell surface biotinylation experiments but [3H]glucosamine biosynthetic labeling revealed a group of previously unidentified high apparent molecular weight glycoconjugates that might contribute to the surface coat. While characterizing GlcNAc-PI that accumulates in the TbGPI12 mutant, we observed inositolphosphoceramides for the first time in this organism.


2003 ◽  
Vol 77 (3) ◽  
pp. 2029-2037 ◽  
Author(s):  
Richard W. Hardy ◽  
Joseph Marcotrigiano ◽  
Keril J. Blight ◽  
John E. Majors ◽  
Charles M. Rice

ABSTRACT A number of hepatitis C virus (HCV) proteins, including NS5B, the RNA-dependent RNA polymerase, were detected in membrane fractions from Huh7 cells containing autonomously replicating HCV RNA replicons. These membrane fractions were used in a cell-free system for the analysis of HCV RNA replication. Initial characterization revealed a reaction in which the production of replicon RNA increased over time at temperatures ranging from 25 to 40°C. Heparin sensitivity and nucleotide starvation experiments suggested that de novo initiation was occurring in this system. Both Mn2+ and Mg2+ cations could be used in the reaction; however, concentrations of Mn2+ greater than 1 mM were inhibitory. Compounds shown to inhibit recombinant NS3 and NS5B activity in vitro were found to inhibit RNA synthesis in the cell-free system. This system should be useful for biochemical analysis of HCV RNA synthesis by a multisubunit membrane-associated replicase and for evaluating potential antiviral agents identified in biochemical or cell-based screens.


2016 ◽  
Vol 113 (6) ◽  
pp. E735-E743 ◽  
Author(s):  
Tusar T. Saha ◽  
Sang Woon Shin ◽  
Wei Dou ◽  
Sourav Roy ◽  
Bo Zhao ◽  
...  

The arthropod-specific juvenile hormone (JH) controls numerous essential functions. Its involvement in gene activation is known to be mediated by the transcription factor Methoprene-tolerant (Met), which turns on JH-controlled genes by directly binding to E-box–like motifs in their regulatory regions. However, it remains unclear how JH represses genes. We used the Aedes aegypti female mosquito, in which JH is necessary for reproductive maturation, to show that a repressor, Hairy, is required for the gene-repressive action of JH and Met. The RNA interference (RNAi) screen for Met and Hairy in the Aedes female fat body revealed a large cohort of Met- and Hairy-corepressed genes. Analysis of selected genes from this cohort demonstrated that they are repressed by JH, but RNAi of either Met or Hairy renders JH ineffective in repressing these genes in an in vitro fat-body culture assay. Moreover, this JH action was prevented by the addition of the translational inhibitor cycloheximide (CHX) to the culture, indicating the existence of an indirect regulatory hierarchy. The lack of Hairy protein in the CHX-treated tissue was verified using immunoblot analysis, and the upstream regions of Met/Hairy-corepressed genes were shown to contain common binding motifs that interact with Hairy. Groucho (gro) RNAi silencing phenocopied the effect of Hairy RNAi knockdown, indicating that it is involved in the JH/Met/Hairy hierarchy. Finally, the requirement of Hairy and Gro for gene repression was confirmed in a cell transfection assay. Thus, our study has established that Hairy and its cofactor Gro mediate the repressive function of JH and Met.


2020 ◽  
Author(s):  
Younghoon Jang ◽  
Young-Kwon Park ◽  
Ji-Eun Lee ◽  
Nhien Tran ◽  
Oksana Gavrilova ◽  
...  

MED1 often serves as a surrogate of the general transcription coactivator complex Mediator for identifying active enhancers. MED1 is required for phenotypic conversion of fibroblasts to adipocytes in vitro but its role in adipose development and expansion in vivo has not been reported. Here we report that MED1 is dispensable for adipose development in mice. Instead, MED1 is required for postnatal adipose expansion and the induction of de novo lipogenesis (DNL) genes after pups switch diet from high-fat maternal milk to carbohydrate-based chow. During adipogenesis, MED1 is dispensable for induction of lineage-determining transcription factors (TFs) PPARγ and C/EBPα but is required for lipid accumulation in the late phase of differentiation. Mechanistically, MED1 controls the induction of DNL genes by facilitating lipogenic TF ChREBP-dependent recruitment of Mediator to active enhancers. Together, our findings identify a cell- and gene-specific regulatory role of MED1 as a lipogenesis coactivator required for postnatal adipose expansion.


1987 ◽  
Vol 7 (3) ◽  
pp. 1242-1249 ◽  
Author(s):  
B Ehlers ◽  
J Czichos ◽  
P Overath

Regulation of variant surface glycoprotein (VSG) mRNA turnover in Trypanosoma brucei was studied in bloodstream forms, in procyclic cells, and during in vitro transformation of bloodstream forms to procyclic cells by approach-to-equilibrium labeling and pulse-chase experiments. Upon initiation of transformation at 27 degrees C in the presence of citrate-cis-aconitate, the half-life of VSG mRNA was reduced from 4.5 h in bloodstream forms to 1.2 h in transforming cells. Concomitantly, an approximately 25-fold decrease in the rate of transcription was observed, resulting in a 100-fold reduction in the steady-state level of de novo-synthesized VSG mRNA. This low level of expression was maintained for at least 7 h, finally decreasing to an undetectable level after 24 h. Transcription of the VSG gene in established procyclic cells was undetectable. For comparison, the turnover of polyadenylated and nonpolyadenylated RNA, beta-tubulin mRNA, and mini-exon-derived RNA (medRNA) was studied. For medRNA, no significant changes in the rate of transcription or stability were observed during differentiation. In contrast, while the rate of transcription of beta-tubulin mRNA in in vitro-cultured bloodstream forms, transforming cells, and established procyclic cells was similar, the half life was four to five times longer in procyclic cells (t1/2, 7 h) than in cultured bloodstream forms (t1/2, 1.4 h) or transforming cells (t1/2, 1.7 h). Inhibition of protein synthesis in bloodstream forms at 37 degrees Celsius caused a dramatic 20-fold decrease in the rate of VSG mRNA synthesis and a 6-fold decrease in half-life to 45 min, while beta-tubulin mRNA was stabilized 2- to 3-fold and mRNA stability remained unaffected. It is postulated that triggering transformation or inhibiting protein synthesis induces changes in the abundance of the same regulatory molecules which effect the shutoff of VSG gene transcription in addition to shortening the half-life of VSG mRNA.


Molecules ◽  
2019 ◽  
Vol 24 (1) ◽  
pp. 142 ◽  
Author(s):  
Magambo Phillip Kimuda ◽  
Dustin Laming ◽  
Heinrich C. Hoppe ◽  
Özlem Tastan Bishop

Pteridine reductase 1 (PTR1) is a trypanosomatid multifunctional enzyme that provides a mechanism for escape of dihydrofolate reductase (DHFR) inhibition. This is because PTR1 can reduce pterins and folates. Trypanosomes require folates and pterins for survival and are unable to synthesize them de novo. Currently there are no anti-folate based Human African Trypanosomiasis (HAT) chemotherapeutics in use. Thus, successful dual inhibition of Trypanosoma brucei dihydrofolate reductase (TbDHFR) and Trypanosoma brucei pteridine reductase 1 (TbPTR1) has implications in the exploitation of anti-folates. We carried out molecular docking of a ligand library of 5742 compounds against TbPTR1 and identified 18 compounds showing promising binding modes. The protein-ligand complexes were subjected to molecular dynamics to characterize their molecular interactions and energetics, followed by in vitro testing. In this study, we identified five compounds which showed low micromolar Trypanosome growth inhibition in in vitro experiments that might be acting by inhibition of TbPTR1. Compounds RUBi004, RUBi007, RUBi014, and RUBi018 displayed moderate to strong antagonism (mutual reduction in potency) when used in combination with the known TbDHFR inhibitor, WR99210. This gave an indication that the compounds might inhibit both TbPTR1 and TbDHFR. RUBi016 showed an additive effect in the isobologram assay. Overall, our results provide a basis for scaffold optimization for further studies in the development of HAT anti-folates.


Haematologica ◽  
2021 ◽  
Author(s):  
Jing Gao ◽  
Michelle Y. Wang ◽  
Yuan Ren ◽  
Tint Lwin ◽  
Tao Li ◽  
...  

Despite significant progress in the treatment of patients with diffuse large B-cell lymphoma (DLBCL) and mantle cell lymphoma (MCL), prognosis of patients with relapsed disease remains poor due to the emergence of drug resistance and subsequent disease progression. Identification of novel targets and therapeutic strategies for these diseases represents an urgent need. Here, we report that both MCL and DLBCL are exquisitely sensitive to transcription-targeting drugs, particular to THZ531, a covalent inhibitor of cyclin-dependent kinase 12 (CDK12). By implementing pharmacogenomics and a cell-based drug screen, we found that THZ531 leads to inhibition of oncogenic transcriptional programs, especially the DNA damage response (DDR) pathway, MYC target genes and the mTOR-4EBP1-MCL-1 axis, contributing to dramatic lymphoma suppression in vitro. We also identified de novo and established acquired THZ531 resistant lymphoma cells conferred by over-activation of the MEKERK and PI3K-AKT-mTOR pathways and upregulation of multidrug resistance-1 (MDR1) protein. Of note, EZH2 inhibitors reversed THZ531 resistance by competitive inhibition of MDR1 and, in combination with THZ531, synergistically inhibited MCL and DLBCL growth in vitro. Our study indicates that CDK12 inhibitor, alone or together with EZH2 inhibitors, offer promise as novel effective approaches for difficult to treat DLBCL and MCL.


Sign in / Sign up

Export Citation Format

Share Document