scholarly journals Computation of distribution of relaxation times by Tikhonov regularization for Li ion batteries: usage of L-curve method

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
T. Paul ◽  
P. W. Chi ◽  
Phillip M. Wu ◽  
M. K. Wu

AbstractIn this paper, the distribution of relaxation times (DRTs) functions are calculated numerically in Matlab for synthetic impedance data from single parallel $$RC$$ RC circuit and two parallel $$RC$$ RC circuits connected in series, experimental impedance data from supercapacitors and α-LiFeO2 anode based Li ion batteries. The quality of the impedance data is checked with the Kramers–Krönig (KK) relations. The DRTs are calculated within the KK compatible regime for all the systems using Tikhonov regularization (TR) method. Here we use a fast and simple L-curve method to estimate the TR parameter (λ) for regularization of the Fredholm integral equations of first kind in impedance. Estimation of the regularization parameters are performed effectively from the offset of the global corner of the L-curve rather than simply using the global corner. The physical significances of DRT peaks are also discussed by calculating the effective resistances and capacitances coupled with peak fitting program. For instance, two peaks in the DRTs justify the electrical double layer capacitance and ion diffusion phenomena for supercapacitors in low to intermediate frequencies respectively. Moreover, the surface film effect, Li/electrolyte and electrode/electrolyte charge transfer related processes are identified for α-LiFeO2 anode based Li-ion batteries. This estimation of the offset of the global corner extends the L-curve approach coupled with the Tikhonov regularization in the field of electrochemistry and can also be applied in similar process detection methods.

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5718
Author(s):  
Nahid Kaisar ◽  
Tanmoy Paul ◽  
Po-Wei Chi ◽  
Yu-Hsun Su ◽  
Anupriya Singh ◽  
...  

A facile solution process was employed to prepare CsPbI3 as an anode material for Li-ion batteries. Rietveld refinement of the X-ray data confirms the orthorhombic phase of CsPbI3 at room temperature. As obtained from bond valence calculations, strained bonds between Pb and I are identified within PbI6 octahedral units. Morphological study shows that the as-prepared δ-CsPbI3 forms a nanorod-like structure. The XPS analysis confirm the presence of Cs (3d, 4d), Pb (4d, 4f, 5d) and I (3p,3d, 4d). The lithiation process involves both intercalation and conversion reactions, as confirmed by cyclic voltammetry (CV) and first-principles calculations. Impedance spectroscopy coupled with the distribution function of relaxation times identifies charge transfer processes due to Li metal foil and anode/electrolyte interfaces. An initial discharge capacity of 151 mAhg−1 is found to continuously increase to reach a maximum of ~275 mAhg−1 at 65 cycles, while it drops to ~240 mAhg−1 at 75 cycles and then slowly decreases to 235 mAhg−1 at 100 cycles. Considering the performance and structural integrity during electrochemical performance, δ-CsPbI3 is a promising material for future Li-ion battery (LIB) application.


2013 ◽  
Vol 221 ◽  
pp. 70-77 ◽  
Author(s):  
Jan Philipp Schmidt ◽  
Philipp Berg ◽  
Michael Schönleber ◽  
André Weber ◽  
Ellen Ivers-Tiffée

RSC Advances ◽  
2018 ◽  
Vol 8 (45) ◽  
pp. 25325-25333 ◽  
Author(s):  
Lifu Li ◽  
Junwei Hou

It is difficult to use conventional capacity detection methods to determine nondestructively and rapidly the capacity of lithium-ion (Li-ion) batteries used in electric vehicles.


2020 ◽  
Vol 167 (16) ◽  
pp. 160552
Author(s):  
Umamaheswari Janakiraman ◽  
Taylor R. Garrick ◽  
Mary E. Fortier

2015 ◽  
Vol 6 (1) ◽  
pp. 26-33 ◽  
Author(s):  
Yeon-Joo Kim ◽  
Sang-Min Lee ◽  
Seok Hong Kim ◽  
Hyun-Soo Kim
Keyword(s):  

2020 ◽  
Author(s):  
Paolo Ghigna ◽  
Lorenzo Airoldi ◽  
Martina Fracchia ◽  
Umberto Anselmi-Tamburini ◽  
Paola D'angelo ◽  
...  

2020 ◽  
Author(s):  
Peiyao Wang ◽  
Bangchuan Zhao ◽  
Jin Bai ◽  
Kunzhen Li ◽  
Hongyang Ma ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document