scholarly journals Determinants of moult haulout phenology and duration in southern elephant seals

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Leandri de Kock ◽  
W. Chris Oosthuizen ◽  
Roxanne S. Beltran ◽  
Marthán N. Bester ◽  
P. J. Nico de Bruyn

AbstractPhenological shifts are among the most obvious biological responses to environmental change, yet documented responses for Southern Ocean marine mammals are extremely rare. Marine mammals can respond to environmental changes through phenological flexibility of their life-history events such as breeding and moulting. Southern elephant seals (Mirounga leonina) undergo an obligatory annual moult which involves the rapid shedding of epidermal skin and hair while seals fast ashore. We quantified the timing (phenology) and duration (the time from arrival ashore to departure) of the moult haulout of 4612 female elephant seals at Marion Island over 32 years. Using linear mixed-effects models, we investigated age, breeding state and environmental drivers of moult timing and haulout duration. We found no clear evidence for a temporal shift in moult phenology or its duration. Annual variation in moult arrival date and haulout duration was small relative to age and breeding effects, which explained more than 90% of the variance in moult arrival date and 25% in moult haulout duration. All environmental covariates we tested explained minimal variation in the data. Female elephant seals moulted progressively later as juveniles, but adults age 4 and older had similar moult start dates that depended on the breeding state of the female. In contrast, moult haulout duration was not constant with age among adults, but instead became shorter with increasing age. Moulting is energetically expensive and differences in the moult haulout duration are possibly due to individual variation in body mass and associated metabolizable energy reserves, although other drivers (e.g. hormones) may also be present. Individual-based data on moult arrival dates and haulout duration can be used as auxiliary data in demographic modelling and may be useful proxies of other important biological parameters such as body condition and breeding history.

2001 ◽  
Vol 75 (9) ◽  
pp. 4103-4109 ◽  
Author(s):  
May La Linn ◽  
Joy Gardner ◽  
David Warrilow ◽  
Grant A. Darnell ◽  
Clive R. McMahon ◽  
...  

ABSTRACT A novel alphavirus was isolated from the louse Lepidophthirus macrorhini, collected from southern elephant seals,Mirounga leonina, on Macquarie Island, Australia. The virus displayed classic alphavirus ultrastructure and appeared to be serologically different from known Australasian alphaviruses. Nearly all Macquarie Island elephant seals tested had neutralizing antibodies against the virus, but no virus-associated pathology has been identified. Antarctic Division personnel who have worked extensively with elephant seals showed no serological evidence of exposure to the virus. Sequence analysis illustrated that the southern elephant seal (SES) virus segregates with the Semliki Forest group of Australasian alphaviruses. Phylogenetic analysis of known alphaviruses suggests that alphaviruses might be grouped according to their enzootic vertebrate host class. The SES virus represents the first arbovirus of marine mammals and illustrates that alphaviruses can inhabit Antarctica and that alphaviruses can be transmitted by lice.


2020 ◽  
Vol 142 ◽  
pp. 161-170
Author(s):  
AM Sánchez-Sarmiento ◽  
V Ruoppolo ◽  
MMC Muelbert ◽  
JS Ferreira Neto ◽  
JL Catão-Dias

Brucella spp. and Leptospira spp. antibodies were surveyed in 35 southern elephant seals (SESs) Mirounga leonina at Elephant Island (South Shetland Islands), western Antarctic peninsula, in the Austral summer of 2003 and 2004. The rose Bengal test and a commercial competitive ELISA (c-ELISA) were used to detect Brucella spp. exposure, and the microscopic agglutination test (MAT) with 22 live serovars was used to determine anti-Leptospira spp. antibodies. We found evidence of Brucella spp. exposure in 3 of 35 (8.6%) SESs tested via the c-ELISA displaying high percentage inhibition (PI), similar to other studies in pinnipeds in which Brucella spp. antibodies have been determined. Two of the 3 positives were pups (PI = 70.4 and 86.6%), while the third was an adult female (PI = 48.8%). The 3 c-ELISA positive SESs were additionally tested via the serum agglutination test but were found to be negative. All individuals were negative for antibodies against 22 Leptospira spp. serovars by MAT. These results contribute to the knowledge and monitoring of zoonotic pathogens with epizootic potential in Southern Ocean pinnipeds. Given the potential impact that pathogens may have on the abundance of wild (sometimes threatened and endangered) populations, constant monitoring and surveillance are required to prevent pathogen spread, particularly under forecast climate change scenarios.


1996 ◽  
Vol 74 (8) ◽  
pp. 1485-1496 ◽  
Author(s):  
B. J. McConnell ◽  
M. A. Fedak

Twelve southern elephant seals (Mirounga leonina) were tracked for an average of 119 days as they left their breeding or moulting beaches on the island of South Georgia between 1990 and 1994. Females travelled either eastward up to 3000 km away to the open Southern Ocean or to the continental shelf on or near the Antarctic Peninsula. Males either stayed close to South Georgia or used South Georgia as a base for shorter trips. The females all left South Georgia in a directed manner at an average rate of 79.4 km/day over at least the first 15 days. Thereafter travel was interrupted by bouts of slower travel or stationary phases. The latter were localized at sites on the continental shelf or along its edge. Three seals that were tracked over more than one season repeated their outward direction of travel and used some of the same sites in subsequent years. The magnitude of the movements makes most of the Southern Ocean potentially available to elephant seals.


2002 ◽  
Vol 80 (3) ◽  
pp. 395-401 ◽  
Author(s):  
Pierre A Pistorius ◽  
Marthán N Bester

To measure the prevalence of senescence in southern elephant seals (Mirounga leonina Linn.) at Marion Island, changes in adult-female survival and breeding probabilities with age were quantified. Mark–recapture data that had been collected over a 17-year period were analysed using recently developed software to obtain likelihood estimates of survival and capture probabilities. With recapture effort constant over the study period, capture probabilities during the breeding seasons were used as indices of breeding probabilities. Longevity in the population was assessed from the resighting of tagged and hence known-age individuals. Less than a 1% difference between prime-age survival and post prime age survival was found over 8 cohorts of marked females. In addition, no reduction in survival of very old individuals was detected, suggesting the absence of senescence in terms of reduced survival in southern elephant seals. No evidence of reproductive senescence in terms of reduced breeding probability with age was detected. Mortality throughout the population therefore resulted in no individuals surviving to the age where physiological decline would become a mortality agent or result in failure to breed. Five percent of female southern elephant seals survived to age 10 and 0.5% to age 17.


1997 ◽  
Vol 45 (5) ◽  
pp. 447 ◽  
Author(s):  
Cameron M. Bell ◽  
Harry R. Burton ◽  
Mark A. Hindell

A longitudinal study of growth of southern elephant seals, Mirounga leonina, during their first foraging trip was undertaken at Macquarie Island. On average, body mass increased by 75% while foraging at sea, with individuals growing at 0.34 ± 0.12 (s.d.) kg day-1 (n = 64), and spending 182 ± 51 days (n = 64) at sea. Relatively smaller changes in body length were recorded during the same period, suggesting that growth was composed primarily of adjustments to body composition, rather than increases in gross body size. This may be in response to the functional demands of pelagic life. Body size established early in life (birth mass and departure mass) positively influenced body mass upon return from the first foraging trip. Growth rate, however, was negatively related to departure mass for females, and this is hypothesised to be related to sex differences in body composition, as well as intrasex differences in foraging skills, diving ability and food- conversion efficiency. Despite this, there was no detectable age-specific sexual dimorphism in the first year of life. Animals that were at sea longer tended to return in better body condition. Interspecific comparison suggests that southern elephant seals grow more than do northern elephant seals, Mirounga angustirostris, and this difference may be related to prey abundance and distribution.


2007 ◽  
Vol 362 (1487) ◽  
pp. 2169-2181 ◽  
Author(s):  
Frédéric Bailleul ◽  
Jean-Benoît Charrassin ◽  
Pascal Monestiez ◽  
Fabien Roquet ◽  
Martin Biuw ◽  
...  

Southern elephant seals, Mirounga leonina , undertake large-scale oceanic movements to access favourable foraging areas. Successful foraging areas of elephant seals from the Kerguelen Islands are investigated here in relation to oceanographic parameters. Movements and diving activity of the seals as well as oceanographic data were collected through a new generation of satellite relayed devices measuring and transmitting locations, pressure, temperature and salinity. For the first time, we have associated foraging behaviour, determined by high increased sinuosity in tracks, and dive density (i.e. number of dives performed per kilometre covered), and changes in body condition, determined by variations in drift rate obtained from drift dives, to identify the oceanographic conditions of successful foraging zones for this species. Two main sectors, one close to the Antarctic continent and the other along the Polar Front (PF), where both foraging activity and body condition increase, seem to be of particular interest for the seals. Within these regions, some seals tended to focus their foraging activity on zones with particular temperature signatures. Along the Antarctic continent, some seals targeted colder waters on the sea bottom during benthic dives, while at the PF the favourable zones tended to be warmer. The possible negative effect of colder waters in Antarctic on the swimming performances of potential fish or squid prey could explain the behaviour of elephant seals in these zones, while warmer waters within the PF could correspond to the optimal conditions for potential myctophid prey of elephant seals.


Sign in / Sign up

Export Citation Format

Share Document