scholarly journals The multilevel organismal diversity approach deciphers difficult to distinguish nudibranch species complex

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Tatiana A. Korshunova ◽  
Floor M. F. Driessen ◽  
Bernard E. Picton ◽  
Alexander V. Martynov

AbstractSpecies identification is a key procedure for broad-scoped ecological, phylogeographic and evolutionary studies. However, to perform a taxonomic study in the molecular era is a complicated task that has many pitfalls. In the present study we use particular examples of common but difficult to distinguish European species within the genus of Polycera (Nudibranchia, Mollusca) to discuss the general issues of the “cryptic species” problem that has broad biological and interdisciplinary importance and can significantly impede ecological, evolutionary, and other biodiversity-related research. The largest dataset of molecular and morphological information for European nudibranchs ever applied encompasses a wide geographical area and shapes a robust framework in this study. Four species are recognized in the species complex, including a new one. It is shown that a lack of appropriate taxonomic analysis led recently to considerable errors in species identity assessment of this complex. Chromatic polymorphism for each species is mapped in a periodic-like framework and combined with statistical analysis of the diagnostic features that considerably facilitates identification of particular species in the complex for biologists and practitioners. The present study evidently shows that “cryptic” and “non-cryptic” components are present within the same species. Therefore, this species complex is well suited for the exploring and testing of general biological problems. One of the main conclusions of this study is that division of biological diversity into “cryptic” and “non-cryptic” components is counterproductive. We propose that the central biological phenomenon of a species can instead be universally designated as multilevel organismal diversity thereby provide a practical set of methods for its investigation.

Forests ◽  
2021 ◽  
Vol 12 (9) ◽  
pp. 1162
Author(s):  
Olga Cholewińska ◽  
Andrzej Keczyński ◽  
Barbara Kusińska ◽  
Bogdan Jaroszewicz

Large trees are keystone structures for the functioning and maintenance of the biological diversity of wooded landscapes. Thus, we need a better understanding of large-tree–other-tree interactions and their effects on the diversity and spatial structure of the surrounding trees. We studied these interactions in the core of the Białowieża Primeval Forest—Europe’s best-preserved temperate forest ecosystem, characterized by high abundance of ancient trees. We measured diameter and bark thickness of the monumental trees of Acer platanoides L., Carpinus betulus L., Picea abies (L.) H. Karst, Quercus robur L., and Tilia cordata Mill., as well as the diameter and distance to the monumental tree of five nearest neighbor trees. The effects of the monumental tree on arrangements of the surrounding trees were studied with the help of linear models. We revealed that the species identity of a large tree had, in the case of C. betulus and T. cordata, a significant impact on the diversity of adjacent tree groupings, their distance to the central tree, and frequency of the neighboring trees. The distance between the neighbor and the large trees increased with the increasing diameter of the central tree. Our findings reinforce the call for the protection of large old trees, regardless of their species and where they grow from the geographical or ecosystem point of view.


ZooKeys ◽  
2018 ◽  
Vol 751 ◽  
pp. 1-40 ◽  
Author(s):  
Alice Laciny ◽  
Herbert Zettel ◽  
Alexey Kopchinskiy ◽  
Carina Pretzer ◽  
Anna Pal ◽  
...  

A taxonomic description of all castes of Colobopsisexplodens Laciny & Zettel, sp. n. from Borneo, Thailand, and Malaysia is provided, which serves as a model species for biological studies on “exploding ants” in Southeast Asia. The new species is a member of the Colobopsiscylindrica (COCY) group and falls into a species complex that has been repeatedly summarized under the name Colobopsissaundersi (Emery, 1889) (formerly Camponotussaundersi). The COCY species group is known under its vernacular name “exploding ants” for a unique behaviour: during territorial combat, workers of some species sacrifice themselves by rupturing their gaster and releasing sticky and irritant contents of their hypertrophied mandibular gland reservoirs to kill or repel rivals. This study includes first illustrations and morphometric characterizations of males of the COCY group: Colobopsisexplodens Laciny & Zettel, sp. n. and Colobopsisbadia (Smith, 1857). Characters of male genitalia and external morphology are compared with other selected taxa of Camponotini. Preliminary notes on the biology of C.explodens Laciny & Zettel, sp. n. are provided. To fix the species identity of the closely related C.badia, a lectotype from Singapore is designated. The following taxonomic changes within the C.saundersi complex are proposed: Colobopsissolenobia (Menozzi, 1926), syn. n. and Colobopsistrieterica (Menozzi, 1926), syn. n. are synonymized with Colobopsiscorallina Roger, 1863, a common endemic species of the Philippines. Colobopsissaginata Stitz, 1925, stat. n., hitherto a subspecies of C.badia, is raised to species level.


2003 ◽  
Vol 18 (2) ◽  
pp. 261-294 ◽  
Author(s):  

AbstractInvasive species are a serious threat to biological diversity and cause economic losses to such industries as agriculture, aquaculture, and forestry. The magnitude of the aquatic invasive species problem has increased exponentially with the expansion of world trade. In response, there have been some efforts made internationally and domestically to prevent, eradicate and control aquatic invasive species in recent years. This article provides an overview of those efforts. It is becoming clear, however, that the response to date has been inadequate, and much remains to be done. New pathways and new invasions are still being discovered, often at a stage when invaders have become well established, thereby making prevention, eradication and control very expensive and difficult to achieve. This study provides a survey of legal tools available to address aquatic invasive species, and suggests possible responses.


2021 ◽  
Vol 9 ◽  
Author(s):  
Chatmongkon Suwannapoom ◽  
Ke Jiang ◽  
Yun-He Wu ◽  
Parinya Pawangkhanant ◽  
Sengvilay Lorphengsy ◽  
...  

The taxonomic status of the Thai populations belonging to the Limnonectes kuhlii species complex is controversial, due to phenotypic similarity in the cryptic species complex. Recently, some studies on this group in Thailand have discovered four new species: L. taylori, L. megastomias, L. jarujini and L. isanensis. Even so, the diversity of this group is still incomplete. Based on an integrative approach encompassing genetic and morphological analyses, we conclude that the Limnonectes populations from Nan Province (northern) and Yala Province (southern) of Thailand are conspecific with L. bannaensis Ye, Fei & Jiang, 2007 and L. utara Matsui, Belabut & Ahmad, 2014, respectively. These are the first records of these species in Thailand. Our study highlights the importance of using DNA sequence data in combination with morphological data to accurately document species identity and diversity. This is especially important for morphologically cryptic species complexes and sympatrically occurring congeners.


PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11613
Author(s):  
Pasi Sihvonen ◽  
Leidys Murillo-Ramos ◽  
Niklas Wahlberg ◽  
Axel Hausmann ◽  
Alberto Zilli ◽  
...  

The systematic position of a large and strikingly coloured reddish-black moth, Cartaletis dargei Herbulot, 2003 (Geometridae: Sterrhinae) from Tanzania, has remained questionable since its description. Here we present molecular and morphological evidence showing that Cartaletis dargei only superficially resembles true Cartaletis Warren, 1894 (the relative name currently considered a junior synonym of Aletis Hübner, 1820), which are unpalatable diurnal moths superficially resembling butterflies, and that it is misplaced in the family Geometridae. We transfer it to Noctuidae: Agaristinae, and combine it with the genus Aletopus Jordan, 1926, from Tanzania, as Aletopus dargei (Herbulot, 2003) (new combination). We revise the genus Aletopus to contain three species, but find that it is a cryptic species complex that needs to be revised with more extensive taxon sampling. Our results demonstrate the difficulties in interpreting and classifying biological diversity. We discuss the problems in species delimitation and the potential drivers of evolution in eastern Africa that led to phenotypic similarity in unrelated lepidopteran lineages.


2019 ◽  
Vol 13 (4) ◽  
pp. 435-449 ◽  
Author(s):  
Vladimir A. Lukhtanov ◽  
Yaroslavna Iashenkova

Chromosomal data are important for taxonomists, cytogeneticists and evolutionary biologists; however, the value of these data decreases sharply if they are obtained for individuals with inaccurate species identification or unclear species identity. To avoid this problem, here we suggest linking each karyotyped sample with its DNA barcode, photograph and precise geographic data, providing an opportunity for unambiguous identification of described taxa and for delimitation of undescribed species. Using this approach, we present new data on chromosome number diversity in neotropical butterflies of the subfamily Biblidinae (genus Vila Kirby, 1871) and the tribe Ithomiini (genera Oleria Hübner, 1816, Ithomia Hübner, 1816, Godyris Boisduval, 1870, Hypothyris Hübner, 1821, Napeogenes Bates, 1862, Pseudoscada Godman et Salvin, 1879 and Hyposcada Godman et Salvin, 1879). Combining new and previously published data we show that the species complex Oleria onega (Hewitson, [1852]) includes three discrete chromosomal clusters (with haploid chromosome numbers n = 15, n = 22 and n = 30) and at least four DNA barcode clusters. Then we discuss how the incomplete connection between these chromosomal and molecular data (karyotypes and DNA barcodes were obtained for different sets of individuals) complicates the taxonomic interpretation of the discovered clusters.


PLoS ONE ◽  
2022 ◽  
Vol 17 (1) ◽  
pp. e0262122
Author(s):  
Adnan Shahdadi ◽  
Katharina von Wyschetzki ◽  
Hung-Chang Liu ◽  
Ka Hou Chu ◽  
Christoph D. Schubart

Due to the lack of visible barriers to gene flow, it was a long-standing assumption that marine coastal species are widely distributed, until molecular studies revealed geographically structured intraspecific genetic differentiation in many taxa. Historical events of sea level changes during glacial periods are known to have triggered sequential disjunctions and genetic divergences among populations, especially of coastal organisms. The Parasesarma bidens species complex so far includes three named plus potentially cryptic species of estuarine brachyuran crabs, distributed along East to Southeast Asia. The aim of the present study is to address phylogeography and uncover real and hidden biological diversity within this complex, by revealing the underlying genetic structure of populations and species throughout their distribution ranges from Japan to West Papua, with a comparison of mitochondrial COX1 and 16S rRNA gene sequences. Our results reveal that the P. bidens species complex consists of at least five distinct clades, resulting from four main cladogenesis events during the mid to late Pleistocene. Among those clades, P. cricotum and P. sanguimanus are recovered as monophyletic taxa. Geographically restricted endemic clades are encountered in southeastern Indonesia, Japan and China respectively, whereas the Philippines and Taiwan share two clades. As individuals of the Japanese clade can also be found in Taiwan, we provide evidence of a third lineage and the occurrence of a potential cryptic species on this island. Ocean level retreats during Pleistocene ice ages and present oceanic currents appear to be the main triggers for the divergences of the five clades that are here addressed as the P. bidens complex. Secondary range expansions converted Taiwan into the point of maximal overlap, sharing populations with Japan and the Philippines, but not with mainland China.


Sign in / Sign up

Export Citation Format

Share Document