scholarly journals Mueller matrix imaging for collagen scoring in mice model of pregnancy

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hee Ryung Lee ◽  
Ilyas Saytashev ◽  
Vinh Nguyen Du Le ◽  
Mala Mahendroo ◽  
Jessica Ramella-Roman ◽  
...  

AbstractPreterm birth risk is associated with early softening of the uterine cervix in pregnancy due to the accelerated remodeling of collagen extracellular matrix. Studies of mice model of pregnancy were performed with an imaging Mueller polarimeter at different time points of pregnancy to find polarimetric parameters for collagen scoring. Mueller matrix images of the unstained sections of mice uterine cervices were taken at day 6 and day 18 of 19-days gestation period and at different spatial locations through the cervices. The logarithmic decomposition of the recorded Mueller matrices mapped the depolarization, linear retardance, and azimuth of the optical axis of cervical tissue. These images highlighted both the inner structure of cervix and the arrangement of cervical collagen fibers confirmed by the second harmonic generation microscopy. The statistical analysis and two-Gaussians fit of the distributions of linear retardance and linear depolarization in the entire images of cervical tissue (without manual selection of the specific regions of interest) quantified the randomization of collagen fibers alignment with gestation time. At day 18 the remodeling of cervical extracellular matrix of collagen was measurable at the external cervical os that is available for the direct optical observations in vivo. It supports the assumption that imaging Mueller polarimetry holds promise for the fast and accurate collagen scoring in pregnancy and the assessment of the preterm birth risk.

Photonics ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 404
Author(s):  
Marius Kröger ◽  
Johannes Schleusener ◽  
Sora Jung ◽  
Maxim E. Darvin

The assessment of dermal alterations is necessary to monitor skin aging, cancer, and other skin diseases and alterations. The gold standard of morphologic diagnostics is still histopathology. Here, we proposed parameters to distinguish morphologically different collagen I structures in the extracellular matrix and to characterize varying collagen I structures in the skin with similar SAAID (SHG-to-AF Aging Index of Dermis, SHG—second-harmonic generation; AF—autofluorescence) values. Test datasets for the papillary and reticular extracellular matrix from images in 24 female subjects, 36 to 50 years of age, were generated. Parameters for SAAID, edge detection, and fast Fourier transformation directionality were determined. Additionally, textural analyses based on the grey level co-occurrence matrix (GLCM) were conducted. At first, changes in the GLCM parameters were determined in the native greyscale images and, furthermore, in the Hilbert-transformed images. Our results demonstrate a robust set of parameters for noninvasive in vivo classification for morphologically different collagen I structures in the skin, with similar and different SAAID values. We anticipate our method to enable an automated prevention and monitoring system with an age- and gender-specific algorithm.


2014 ◽  
Vol 783-786 ◽  
pp. 72-77 ◽  
Author(s):  
Takayoshi Nakano ◽  
Aira Matsugaki ◽  
Takuya Ishimoto ◽  
Mitsuharu Todai ◽  
Ai Serizawa ◽  
...  

Bone microstructure is dominantly composed of anisotropic extracellular matrix (ECM) in which collagen fibers and epitaxially-oriented biological apatite (BAp) crystals are preferentially aligned depending on the bone anatomical position, resulting in exerting appropriate mechanical function. The regenerative bone in bony defects is however produced without the preferential alignment of collagen fibers and the c-axis of BAp crystals, and subsequently reproduced to recover toward intact alignment. Thus, it is necessary to produce the anisotropic bone-mimetic tissue for the quick recovery of original bone tissue and the related mechanical ability in the early stage of bone regeneration. Our group is focusing on the methodology for regulating the arrangement of bone cells, the following secretion of collagen and the self-assembled mineralization by oriented BAp crystallites. Cyclic stretching in vitro to bone cells, principal-stress loading in vivo on scaffolds, step formation by slip traces on Ti single crystal, surface modification by laser induced periodic surface structure (LIPSS), anisotropic collagen substrate with the different degree of orientation, etc. can dominate bone cell arrangement and lead to the construction of the oriented ECM similar to the bone tissue architecture. This suggests that stress/strain loading, surface topography and chemical anisotropy are useful to produce bone-like microstructure in order to promote the regeneration of anisotropic bone tissue and to understand the controlling parameters for anisotropic osteogenesis induction.


2017 ◽  
Vol 35 (03) ◽  
pp. 292-297 ◽  
Author(s):  
Sleiman Ghorayeb ◽  
Matthew Blitz ◽  
Kemoy Harris ◽  
Nidhi Vohra ◽  
Cristina Sison ◽  
...  

Background In a normal pregnancy, cervical collagen fibers remain organized in predictable patterns throughout most of the gestation. Cervical remodeling reflects a rearrangement of collagen fibers in which they become increasingly disordered and contribute to the pathogenesis of spontaneous preterm birth. Quantitative ultrasound analysis of cervical tissue echotexture may have the capacity to identify microstructural changes before the onset of cervical shortening. Objective The primary objective of this study was to examine the utility of a novel quantitative sonographic marker, the cervical heterogeneity index (HI), which reflects the relative organization of cervical collagen fibers. Also, we aimed to determine an optimal HI cut-point to predict spontaneous preterm birth. Study Design This retrospective cohort study employed a novel image-processing technique on transvaginal ultrasound images of the cervix in gestations between 14 and 28 completed weeks. The transvaginal sonography images were analyzed in MATLAB (MathWorks, Natick, MA) using a custom image-processing technique that assessed the relative heterogeneity of the cervical tissue. Results A total of 151 subjects were included in the study. The mean HI in subjects who delivered preterm and at term was 8.28 ± 3.73 and 12.35 ± 5.80, respectively (p < 0.0001). Thus, decreased tissue heterogeneity was associated with preterm birth, and increased tissue heterogeneity was associated with delivery at term. In our study population, preterm birth was associated with a short cervix (<2.5 cm), history of preterm birth and lower HI, and our findings indicate that HI may improve prediction of preterm birth. Conclusion Quantitative ultrasound measurement of the cervical HI is a promising, noninvasive tool for early prediction of spontaneous preterm birth.


2020 ◽  
Vol 21 (21) ◽  
pp. 8119
Author(s):  
Irina Druzhkova ◽  
Marina Shirmanova ◽  
Nadezhda Ignatova ◽  
Varvara Dudenkova ◽  
Maria Lukina ◽  
...  

Collagen, the main non-cellular component of the extracellular matrix (ECM), is profoundly reorganized during tumorigenesis and has a strong impact on tumor behavior. The main source of collagen in tumors is cancer-associated fibroblasts. Cancer cells can also participate in the synthesis of ECM; however, the contribution of both types of cells to collagen rearrangements during the tumor progression is far from being clear. Here, we investigated the processes of collagen biosynthesis and remodeling in parallel with the transcriptome changes during cancer cells and fibroblasts interactions. Combining immunofluorescence, RNA sequencing, and second harmonic generation microscopy, we have explored the relationships between the ratio of epithelial (E) and mesenchymal (M) components of hybrid E/M cancer cells, their ability to activate fibroblasts, and the contributions of both cell types to collagen remodeling. To this end, we studied (i) co-cultures of colorectal cancer cells and normal fibroblasts in a collagen matrix, (ii) patient-derived cancer-associated fibroblasts, and (iii) mouse xenograft models. We found that the activation of normal fibroblasts that form dense collagen networks consisting of large, highly oriented fibers depends on the difference in E/M ratio in the cancer cells. The more-epithelial cells activate the fibroblasts more strongly, which correlates with a dense and highly ordered collagen structure in tumors in vivo. The more-mesenchymal cells activate the fibroblasts to a lesser degree; on the other hand, this cell line has a higher innate collagen remodeling capacity. Normal fibroblasts activated by cancer cells contribute to the organization of the extracellular matrix in a way that is favorable for migratory potency. At the same time, in co-culture with epithelial cancer cells, the contribution of fibroblasts to the reorganization of ECM is more pronounced. Therefore, one can expect that targeting the ability of epithelial cancer cells to activate normal fibroblasts may provide a new anticancer therapeutic strategy.


2018 ◽  
Vol 33 (7) ◽  
pp. 903-914
Author(s):  
Aarón de Jesus Palacios-Rodríguez ◽  
Mauricio Flores-Moreno ◽  
Laura Edith Castellano ◽  
Ramón Carriles ◽  
Iraís Quintero-Ortega ◽  
...  

The stability and bioactivity of biologic implants rely mainly on the control of the crosslinking process of collagen. However, the most common methods have no control on the crosslinking degree producing it excessively. This study outlines the role of crosslinking of collagen-based implants with oligourethane on the host response following reconstruction of a rat full-thickness abdominal wall defect. We decellularized and crosslinked bovine pericardial tissue to achieve two crosslinking degrees. For the decellularized implants, named as non-crosslinked (N-CL), the collagen-amines were 0.42 ± 0.02 mmol/mg. Crosslinking by the oligourethane reduced the primary amine concentration to 0.28 ± 0.01 and 0.19 ± 0.01 mmol/mg; these values were classified as low (∼30%, L-CL) and medium crosslinking (∼50%, M-CL), respectively. By imaging the implants using second harmonic generation microscopy, we observed undulated bundles of collagen fibers organized in multi-directed layers localized in N-CL and L-CL samples. Post-implantation, a negligible change in the organization of collagen fibers in the crosslinked implants was observed, suggesting that the in vivo biodegradation was delayed. An enlargement of the implant area was also observed, without rupture, in all three (N-CL, L-CL, M-CL) materials, whereas adhesion to the omentum, but not to the bowel, was observed. The number of blood vessels after 90-day implantation in N-CL and L-CL was 13 ± 1 and 12 ± 1 per field, respectively, while the number significantly decreased to 2 ± 1 in M-CL. The results suggest that the controlled degree of crosslinking in oligourethane-modified biologic implants can be used as a strategy to balance biodegradation and remodeling in surgical repair of soft tissues.


2021 ◽  
Vol 14 (1) ◽  
pp. 015005
Author(s):  
H Oliveira ◽  
C Médina ◽  
G Labrunie ◽  
N Dusserre ◽  
S Catros ◽  
...  

Abstract When considering regenerative approaches, the efficient creation of a functional vasculature, that can support the metabolic needs of bioengineered tissues, is essential for their survival after implantation. However, it is widely recognized that the post-implantation microenvironment of the engineered tissues is often hypoxic due to insufficient vascularization, resulting in ischemia injury and necrosis. This is one of the main limitations of current tissue engineering applications aiming at replacing significant tissue volumes. Here, we have explored the use of a new biomaterial, the cell-assembled extracellular matrix (CAM), as a biopaper to biofabricate a vascular system. CAM sheets are a unique, fully biological and fully human material that has already shown stable long-term implantation in humans. We demonstrated, for the first time, the use of this unprocessed human ECM as a microperforated biopaper. Using microvalve dispensing bioprinting, concentrated human endothelial cells (30 millions ml−1) were deposited in a controlled geometry in CAM sheets and cocultured with HSFs. Following multilayer assembly, thick ECM-based constructs fused and supported the survival and maturation of capillary-like structures for up to 26 d of culture. Following 3 weeks of subcutaneous implantation in a mice model, constructs showed limited degradative response and the pre-formed vasculature successfully connected with the host circulatory system to establish active perfusion.This mechanically resilient tissue equivalent has great potential for the creation of more complex implantable tissues, where rapid anastomosis is sine qua non for cell survival and efficient tissue integration.


Sign in / Sign up

Export Citation Format

Share Document