scholarly journals Quality of heavy metal-contaminated soil before and after column flushing with washing agents derived from municipal sewage sludge

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Barbara Klik ◽  
Zygmunt M. Gusiatin ◽  
Dorota Kulikowska

AbstractRemoval of heavy metals (HMs) from soil is a priority in soil washing/soil flushing. However, for further management of remediated soil, it should be characterized in detail. This study presents, for the first time, an evaluation of soil quality after column flushing with new-generation washing agents (WAs) recovered from municipal sewage sludge (dissolved organic matter, DOM; soluble humic-like substances, HLS; soluble humic substances, SHS) and Na2EDTA as a standard benchmark. Sandy loam soil was spiked with industrial levels of Cu, Pb and Zn, then flushed in a column reactor at two WA flow rates (0.5 and 1.0 ml/min). Soil quality was assessed by determining both physico-chemical (pH, total HMs and their mobility, soil organic matter, OM, humic substances, HS and their fractions, macroelements) and biological indicators (dehydrogenase activity, DHA; germination rate, GR; and inhibition factors for roots and shoots of Triticum aestivum). Total residual HMs contents and HMs contents in the mobile fraction were significantly lower in soil flushed at 1.0 ml/min than in soil flushed at 0.5 ml/min. With all WAs, the decrease in Cu content was larger than that of the other HMs, however this HM most effectively was removed with DOM. In contrast, Pb most effectively was removed by HLS and Na2EDTA, and DOM should not be used to remediate Pb-contaminated soil, due to its very low effectiveness. Flow rate did not appear to affect the fertilizing properties of the soil, DHA activity or soil toxicity indicators. Soil flushing with all SS_WAs increased OM, HS, and exchangeable P, K and Na content in remediated soils, but decreased exchangeable Ca content, and in most cases, exchangeable Mg content. Soil flushing substantially improved DHA activity and GR, but only slightly improved the shoot and root inhibition factors.

2019 ◽  
Vol 144 ◽  
pp. 57-64 ◽  
Author(s):  
Dorota Kulikowska ◽  
Barbara K. Klik ◽  
Zygmunt M. Gusiatin ◽  
Karolina Hajdukiewicz

2014 ◽  
Vol 955-959 ◽  
pp. 2940-2943
Author(s):  
Ke Zhao ◽  
Yu Zhang ◽  
Yu Ting Zhang ◽  
Ying Ying Yin

Based on the static composting process of municipal sewage sludge, the parameters of the treatment process were studied, including moisture, temperature, pH, organic matter, total phosphorus, the number of bacterial and GI(Germination Index). The decomposition of organic matter and phosphorus concentration were obvious and the amount of bacteria varied regularly. After the composting, pH, water contend, organic matter and GI all met Disposal of sludge from municipal wastewater treatment plant-Control standard for agricultural use.


2020 ◽  
Author(s):  
Andrea Prof. Dr. Farsang ◽  
Katalin Dr. Perei ◽  
Attila Bodor ◽  
Zsuzsanna Dr. Ladányi ◽  
Katalin Csányi ◽  
...  

<p>Land application of sewage sludge is an increasingly popular means of the reuse of sewage sludge as it allows for recycling of valuable components, such as organic matter, N, P and other nutrients. Indeed, sewage sludge amendment to the soil modifies the soil’s physico-chemical properties, such as plant-available macro/micro nutrient contents, organic matter content. Additionally, sewage sludge applications can significantly increase the amount of microbial biomass in the soil and can also increase the soil enzyme activities. The aim of the present study is to investigate the impact of low-dose municipal sewage sludge compost amendment on the nutrient status and the biological activity in Chernozem soils. </p><p>The study area, located near Újkígyós (SE Hungary), is a 5.6 ha arable land, where 2.5 m<sup>3</sup>/ha/year municipal sewage compost has been regularly disposed since 2013. The pH (in H<sub>2</sub>O) and humus content of soils were measured according to standard procedures. The macronutrients P<sub>2</sub>O<sub>5</sub> and K<sub>2</sub>O were extracted using ammonium-lactate, while the nitrogen forms (NO<sub>2</sub><sup>-</sup> + NO<sub>3</sub><sup>-</sup> -N) were extracted with KCl-solution. The nutrient content was then determined by a flow injection analysis photometer. In order to determine the bacterial composition and enzyme activity of the soil samples, the number of living cells (CFUs), the catalase enzyme activity (CAT) and the dehydrogenase activity (DHA) were determined. The CO<sub>2</sub> emission was measured by an EGM-5 Portable High Precision CO<sub>2</sub> Meter in the field.  </p><p>The sewage sludge compost applied to Chernozem soils improved soil properties by adding slowly decomposing organic matter, abundant in plant macronutrients (N, K, P). The anaerobic microorganisms and the DHA enzyme activity in the anaerobic soil layers did not increase in the compost-amended soils. The aerobic microorganisms (CFUs) and CAT activity tended to be higher in treated soils compared to the non-amended (control) site, however not significantly. These results suggest that the soil biological activity is only moderately affected by the low-dose municipal sewage sludge compost applications. According to our field CO<sub>2</sub> emission measurements, the yearly application of the sewage sludge compost in a low-dose seemingly did not affect the soil respiration rates, compared to a local control site.</p><p>The research was funded by the ‘Thematic Network for the Sustainable Use of Re-sources – RING2017’ project (program code: EFOP-3.6.2-16-201700010).</p>


2020 ◽  
Vol 13 (19) ◽  
Author(s):  
Andrea Farsang ◽  
Izabella Babcsányi ◽  
Zsuzsanna Ladányi ◽  
Katalin Perei ◽  
Attila Bodor ◽  
...  

Abstract Sewage sludge contains organic matter and micro and macronutrients which are potentially useful for agricultural usage. However, it can be harmful when containing undesirable amounts of organic pollutants, heavy metals, or pathogens. Our study focused on examining the changes in the extractable nutrient, organic matter and heavy metal contents of a Chernozem soil and the alteration of the soil biological activity as a consequence of low-dose municipal sewage sludge compost applications (0.5 t/ha). Sampling campaigns were done in 2018 near Újkígyós (SE Hungary) during which composite soil samples (0–30 cm and 30–60 cm) and groundwater samples were collected for assessing changes in the nutrient and heavy metal concentrations as a result of compost amendments’ use. Additionally, upper soil (0–50 cm) and subsoil (50–80 cm) were sampled for assessing biological parameters, considered to be aerobic and anaerobic soil layers, respectively. Soil samples were analyzed for the basic pedological parameters (pH, organic matter, carbonates and texture), nutrients (K2O, P2O5, N-forms and organic matter) and heavy metal concentrations following standard extraction procedures. The microbial properties were characterized by colony-forming units (CFUs) and enzyme activity measurements. The results of the nutrient analyses show significantly increased soil-bound K2O, P2O5 and NO2− + NO3− contents linked to the sewage sludge treatments. However, neither the organic matter nor the heavy metal content varied significantly in the sludge-amended soil compared with a control site. The microbiological analyses revealed that the sewage sludge treatments tended to increase the aerobic CFUs, but not that of the anaerobic microbes. The average catalase enzyme activity in both the aerobic and anaerobic samples and the average dehydrogenase activity only in the aerobic layers showed a slight but not significant increase in the compost-amended soils. Overall, these results convincingly demonstrated that amending soils with low doses of municipal sewage sludge composts (lacking any industrial sources) can be a sustainable fertilizing practice taking advantage of their high N, P and K contents that are slowly converted to their bioavailable forms thus preventing their excessive leaching in the groundwater.


2012 ◽  
Vol 38 (4) ◽  
pp. 87-97 ◽  
Author(s):  
Barbara Kalisz ◽  
Andrzej Lachacz ◽  
Roman Glazewski ◽  
Andrzej Klasa

Abstract Labile fractions of organic matter can rapidly respond to changes in soil and they have been suggested as sensitive indicators of soil organic matter. Two labile fractions of organic carbon in the soils amended with fresh municipal sewage sludge in two rates (equivalent of 60 kg P ha-1 and 120 kg P ha-1) were studied. Soils under studies were overgrown with Salix in Germany, Estonia and Poland. In Polish soils application of sewage sludge increased the content of both labile organic carbon fractions (KMnO4-C and HWC) for a period of one year. Estonian soils were stable and no distinct changes in labile organic carbon fractions occurred.


Sign in / Sign up

Export Citation Format

Share Document