scholarly journals Bio-mimetic synthesis of catalytically active nano-silver using Bos taurus (A-2) urine

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Prashant D. Sarvalkar ◽  
Rutuja R. Mandavkar ◽  
Mansingraj S. Nimbalkar ◽  
Kiran K. Sharma ◽  
Pramod S. Patil ◽  
...  

AbstractHerein we have synthesized silver nanoparticles (Ag NPs) using liquid metabolic waste of Bos taurus (A-2 type) urine. Various bio-molecules present in cow urine, are effectively used to reduce silver (Ag) ions into silver nanoparticles in one step. This is bio-inspired electron transfer to Ag ion for the formation of base Ag metal and is fairly prompt and facile. These nanoparticles act as a positive catalyst for various organic transformation reactions. The structural, morphological, and optical properties of the as-synthesized Ag NPs are widely characterized by X-ray diffraction spectroscopy, ultraviolet–visible spectroscopy, scanning electron microscope, Fourier transmission infra-red spectroscopy, and atomic force microscopy. The as-synthesized bio-mimetic Ag NPs show potential activity for several reduction reactions of nitro groups. The Ag NPs were also used for degradation of hazardous dyes such as Methylene blue and Crystal violet with good degradation rate constant.

2021 ◽  
Author(s):  
Prashant D Sarvalkar ◽  
Rutuja R Mandavkar ◽  
Mansingraj S Nimbalkar ◽  
Kiran K Sharma ◽  
Pramod S Patil ◽  
...  

Abstract Bio-molecules present in liquid metabolic waste of an Indian cow are effectively used to reduce silver (Ag) ions into Ag nanoparticles (Ag NPs) in one step. This bio-inspired electron transfer to Ag ion for the formation of base Ag metal is fairly prompt and facile. These nanoparticles act as a positive catalyst for various organic transformation reactions. The X-RD pattern of the synthesized product confirmed the formation of Ag nanoparticles. The bio-mimetic Ag NPs show potential activity for degradation of dyes under study. Herein, we have successfully carried out several reduction reactions of nitro groups using Ag nanoparticles as a heterogeneous nanocatalyst.


Nanomaterials ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 877
Author(s):  
Duong Duc La ◽  
Tuan Ngoc Truong ◽  
Thuan Q. Pham ◽  
Hoang Tung Vo ◽  
Nam The Tran ◽  
...  

The use of nano-additives is widely recognized as a cheap and effective pathway to improve the performance of lubrication by minimizing the energy loss from friction and wear, especially in diesel engines. In this work, a simple and scalable protocol was proposed to fabricate a graphene additive to improve the engine lubricant oil. Graphene nanoplates (GNPs) were obtained by a one-step chemical exfoliation of natural graphite and were successfully modified with a surfactant and an organic compound to obtain a modified GNP additive, that can be facilely dispersed in lubricant oil. The GNPs and modified GNP additive were characterized using scanning electron microscopy, X-ray diffraction, atomic force microscopy, Raman spectroscopy, and Fourier-transform infrared spectroscopy. The prepared GNPs had wrinkled and crumpled structures with a diameter of 10–30 µm and a thickness of less than 15 nm. After modification, the GNP surfaces were uniformly covered with the organic compound. The addition of the modified GNP additive to the engine lubricant oil significantly enhanced the friction and antiwear performance. The highest reduction of 35% was determined for the wear scar diameter with a GNP additive concentration of approximately 0.05%. The mechanism for lubrication enhancement by graphene additives was also briefly discussed.


2011 ◽  
Vol 2011 ◽  
pp. 1-7 ◽  
Author(s):  
Ravishankar Bhat ◽  
Raghunandan Deshpande ◽  
Sharanabasava V. Ganachari ◽  
Do Sung Huh ◽  
A. Venkataraman

This is a report on photo-irradiated extracellular synthesis of silver nanoparticles using the aqueous extract of edible oyster mushroom (Pleurotus florida) as a reducing agent. The appearance, size, and shape of the silver nanoparticles are understood by UV-visible spectroscopy, field emission scanning electron microscopy, transmission electron microscopy, and atomic force microscopy. The X-ray diffraction studies, energy dispersive X-ray analysis indicate that particles are crystalline in nature. Fourier transform infrared spectroscopy analysis revealed that the nanoparticles are covered with biomoieties on their surface. As can be seen from our studies, the biofunctionalized silver nanoparticles thus produced have shown admirable antimicrobial effects, and the synthetic procedure involved is eco-friendly and simple, and hence high range production of the same can be considered for using them in many pharmaceutical applications.


2016 ◽  
Vol 8 (1) ◽  
pp. 106-111
Author(s):  
Somnath BHOWMIK ◽  
Badal Kumar DATTA ◽  
Ajay Krishna SAHA ◽  
Pradyut CHAKMA ◽  
Narayan Chandra MANDAL

The biological synthesis of nanoparticles using plant extracts plays an important role in the field of nanotechnology. In this study, rapid, simple approach was applied for synthesis of silver nanoparticles using , Clerodendrum infortunatum, Mucuna interrupta, Phlogancanthus thyrsiflorus and Sansevieria trifasciata aqueous leaf extract. The plant extract acts both as reducing agent as well as capping agent. To identify the compounds responsible for reduction of silver ions, the functional groups present in plant extract were investigated by FTIR. Various techniques used to characterize synthesized nanoparticles are Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM) and UV–Visible spectrophotometer. Results confirmed that this protocol was simple, rapid, one step, eco-friendly, non-toxic and might be an alternative conventional physical/chemical methods. Conversion of silver nanoparticles takes place at room temperature without the involvement of any hazardous chemicals.


2021 ◽  
Vol 10 (6) ◽  
pp. e23510615304
Author(s):  
Larissa Svetlana Cavalcante Silva ◽  
Salomão Rocha Martim ◽  
Dib Mady Diniz Gomes ◽  
Fabiano Brito Prado ◽  
Nélly Mara Vinhote Marinho ◽  
...  

Films and coatings based on natural polymers are used to conserve nutritional quality of fruits, vegetables and also delay their ripening. The purpose of this study was to develop films with starch extracted from Dioscorea altissima Lam. (dunguey) incorporated with silver nanoparticles for coating and preserving fruits. The films obtained by cast were characterized visually, by Scanning Electron Microscope, by Atomic Force Microscopy, by X-Ray Diffraction and by Fourier-Transform Infrared Spectroscopy. Antimicrobial activity and technological properties were also evaluated. The coating of camu-camu fruits [Myrciaria dubia (Kunth) McVaugh] was carried out by immersing them in the filmogenic solution, followed by their physicochemical and microbiological analysis. The films with silver nanoparticles showed transparency, flexibility, spherical clusters and a higher average roughness. A reduction in thickness, solubility and water vapor permeability was also observed. Antimicrobial action against Staphylococcus aureus and Escherichia coli was proved as well. The fruits coated with films exhibited delay in ripening, with maintenance of quality and longevity. Uncoated fruits showed greater wilting and wrinkling. The starch film incorporated with silver nanoparticles was effective for preserving camu-camu fruit.


2020 ◽  
Vol 19 (1) ◽  
pp. 87-93
Author(s):  
Gerardo Gordillo-Guzmán ◽  
Ophyr Virgüez-Amaya ◽  
Camilo Otálora-Bastidas ◽  
Clara Calderón-Triana ◽  
César Quiñones-Segura

This work report results concerning the effect that the substitution of the methylammonium cation by the formamidinium cation causes on the properties of FAx(MA1-x)PbI3films synthesized by spin coating in one step. For that, it was conducted a study to establish the influence of the composition of the FAx(MA1-x)PbI3films on their optical, structural and morphological properties, determined through spectral transmittance, atomic force microscopy and X-ray diffraction measurements. Correlating parameters of synthesis with results of the study of properties performed, we were able to get conditions to grow FAx(MA1-x)PbI3films with improved optical gap, microstructure and morphology, what allows to think that this compound is suitable to be used as the active layer in hybrid solar cells.


2021 ◽  
Vol 3 (1) ◽  
pp. 76-81
Author(s):  
Siti Husnaa Mohd Taib ◽  
Kamyar Shameli ◽  
Roshafima Rasit Ali ◽  
Zahra Izadiyan ◽  
Zatil Izzah Ahmad Tarmizi

The present paper reports the synthesis of silver nanoparticles (Ag-NPs) by a green method using Hibiscus sabdariffa (H. sabdariffa) leaves extract as reductant and stabilizer. The synthesized Ag-NPs were characterized by ultraviolet-visible (UV-vis) spectroscopy, transmission electron microscopy (TEM), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR). UV-vis spectrum of synthesized Ag-NPs showed a peak at 378 nm. TEM analysis revealed that the particles were spherical and irregular in shape and has average size around 56.52 nm. This structure and size of particles were confirmed by AFM analysis. The UV-vis and FTIR spectrum provides evidence of the presence of caffeic acid component as a representative biomolecule in stabilising the nanoparticles based on previous studies. Hence, this study advocates that H. sabdariffa have potential for synthesizing nanoparticles.


2019 ◽  
Vol 3 (2) ◽  
pp. 34 ◽  
Author(s):  
Phuong Nguyen-Tri ◽  
Van Nguyen ◽  
Tuan Nguyen

We report here the synthesis of uniform nanospheres-like silver nanoparticles (Ag NPs, 5–10 nm) and the dumbbell-like Fe3O4-Ag hybrid nanoparticles (FeAg NPs, 8–16 nm) by the use of a seeding growth method in the presence of oleic acid (OA)/oleylamine (OLA) as surfactants. The antibacterial activity of pure nanoparticles and nanocomposites by monitoring the bacterial lag–log growth has been investigated. The electron transfer from Ag NPs to Fe3O4 NPs which enhances the biological of silver nanoparticles has been proven by nanoscale Raman spectroscopy. The lamellae structure in the spherulite of FeAg NPs/High Density Polyethylene (HDPE) nanocomposites seems to play the key role in the antibacterial activity of nanocomposites, which has been proven by nanoscale AFM-IR. An atomic force microscopy coupled with nanoscale infrared microscopy (AFM-IR) is used to highlight the distribution of nanoparticles on the surface of nanocomposite at the nanoscale. The presence of FeAg NPs in PE nanocomposites has a better antibacterial activity than that reinforced by Ag NPs due to the faster Ag+ release rate from the Fe3O4-Ag hybrid nanoparticles and the ionization of Ag NPs in hybrid nanostructure.


Author(s):  
Osama Fayyaz ◽  
Khurra Shahzad ◽  
Tooba Qureshi ◽  
Izza Fatima ◽  
Abdul Shakoor ◽  
...  

Coatings are considered to be a promising solution for the corrosion and wear in various industries. NiP coatings are well known for their anticorrosive behavior but lack mechanical strength. In present study, the effect of sub microscale TiC particles on the structural, morphological, mechanical and electrochemical analysis of Ni-P/TiC coating were carried out through X-ray diffraction(XRD), scanning electron microscopy (SEM), atomic force microscopy (AFM), Vickers microhardness, nanoindentation and potentiodynamic polarization test on Gamry. Co-electrodeposition of the Ni-P/TiC with varying the composition of TiC namely 0.5, 1.0, 1.5 and 2.0g/L. The depostion conditions were optimized for pH, temperature and current density. The surface morphology of coat represents nodular structure with TiC particles embedded in it without any defects. Structural analysis proves the amorphous nature of the coating. Vickers microhardness is observed to increase with the composition and attains highest value at 1.5g/L of TiC in the chemical bath. Nanoindentation results are in agreement with the hardness result. Thus, improvement in mechanical properties of the Ni-P coating is achieved without affecting its corrosion resistance.


Author(s):  
Victor Ibarra ◽  
Demetrio Mendoza ◽  
Alma Sanchez ◽  
Rosa Vazquez ◽  
Karina Aleman ◽  
...  

Graphene oxide was synthesized by a one-step environmentally friendly mechanochemistry process directly from graphite and characterized by Raman, FT-IR and UV/vis spectroscopies, Atomic Force Microscopy, X-ray Diffraction, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy and Thermogravimetric Analysis. Spectroscopic analysis shows that the functional groups and oxygen content of the synthesized material are comparable with those of graphene oxide synthesized by other previously reported methods (Hummers). Thermogravimetric analysis reveals thermal stability up to 400 °C.


Sign in / Sign up

Export Citation Format

Share Document