scholarly journals The effect of population size for pathogen transmission on prediction of COVID-19 spread

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Xuqi Zhang ◽  
Haiqi Liu ◽  
Hanning Tang ◽  
Mei Zhang ◽  
Xuedong Yuan ◽  
...  

AbstractExtreme public health interventions play a critical role in mitigating the local and global prevalence and pandemic potential. Here, we use population size for pathogen transmission to measure the intensity of public health interventions, which is a key characteristic variable for nowcasting and forecasting of COVID-19. By formulating a hidden Markov dynamic system and using nonlinear filtering theory, we have developed a stochastic epidemic dynamic model under public health interventions. The model parameters and states are estimated in time from internationally available public data by combining an unscented filter and an interacting multiple model filter. Moreover, we consider the computability of the population size and provide its selection criterion. With applications to COVID-19, we estimate the mean of the effective reproductive number of China and the rest of the globe except China (GEC) to be 2.4626 (95% CI: 2.4142–2.5111) and 3.0979 (95% CI: 3.0968–3.0990), respectively. The prediction results show the effectiveness of the stochastic epidemic dynamic model with nonlinear filtering. The hidden Markov dynamic system with nonlinear filtering can be used to make analysis, nowcasting and forecasting for other contagious diseases in the future since it helps to understand the mechanism of disease transmission and to estimate the population size for pathogen transmission and the number of hidden infections, which is a valid tool for decision-making by policy makers for epidemic control.

mBio ◽  
2021 ◽  
Vol 12 (3) ◽  
Author(s):  
Hannah M. Rowe ◽  
Jason W. Rosch

ABSTRACT Pathogen transmission is a key point not only for infection control and public health interventions but also for understanding the selective pressures in pathogen evolution. The “success” of a pathogen lies not in its ability to cause signs and symptoms of illness but in its ability to be shed from the initial hosts, survive between hosts, and then establish infection in a new host. Recent insights have shown the importance of the interaction between the pathogen and both the commensal microbiome and coinfecting pathogens on shedding, environmental survival, and acquisition of infection. Pathogens have evolved in the context of cooperation and competition with other microbes, and the roles of these cooperations and competitions in transmission can inform novel preventative and therapeutic strategies. IMPORTANCE Transmission of pathogens from one host to another is an essential event in pathogenesis. Transmission is driven by factors intrinsic to the host and to the pathogen. In addition, transmission is altered by interactions of the pathogen with the commensal microbiota of the host and coinfecting pathogens. Recent insights into these interactions have shown both enhanced and reduced transmission efficiencies depending on the makeup of the polymicrobial community. This review will discuss polymicrobial interactions during shedding from the initial host, time in the environment, and acquisition by the new host.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Pooja Sengupta ◽  
Bhaswati Ganguli ◽  
Sugata SenRoy ◽  
Aditya Chatterjee

Abstract Background In this study we cluster the districts of India in terms of the spread of COVID-19 and related variables such as population density and the number of specialty hospitals. Simulation using a compartment model is used to provide insight into differences in response to public health interventions. Two case studies of interest from Nizamuddin and Dharavi provide contrasting pictures of the success in curbing spread. Methods A cluster analysis of the worst affected districts in India provides insight about the similarities between them. The effects of public health interventions in flattening the curve in their respective states is studied using the individual contact SEIQHRF model, a stochastic individual compartment model which simulates disease prevalence in the susceptible, infected, recovered and fatal compartments. Results The clustering of hotspot districts provide homogeneous groups that can be discriminated in terms of number of cases and related covariates. The cluster analysis reveal that the distribution of number of COVID-19 hospitals in the districts does not correlate with the distribution of confirmed COVID-19 cases. From the SEIQHRF model for Nizamuddin we observe in the second phase the number of infected individuals had seen a multitudinous increase in the states where Nizamuddin attendees returned, increasing the risk of the disease spread. However, the simulations reveal that implementing administrative interventions, flatten the curve. In Dharavi, through tracing, tracking, testing and treating, massive breakout of COVID-19 was brought under control. Conclusions The cluster analysis performed on the districts reveal homogeneous groups of districts that can be ranked based on the burden placed on the healthcare system in terms of number of confirmed cases, population density and number of hospitals dedicated to COVID-19 treatment. The study rounds up with two important case studies on Nizamuddin basti and Dharavi to illustrate the growth curve of COVID-19 in two very densely populated regions in India. In the case of Nizamuddin, the study showed that there was a manifold increase in the risk of infection. In contrast it is seen that there was a rapid decline in the number of cases in Dharavi within a span of about one month.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Thomas J. Barrett ◽  
Karen C. Patterson ◽  
Timothy M. James ◽  
Peter Krüger

AbstractAs we enter a chronic phase of the SARS-CoV-2 pandemic, with uncontrolled infection rates in many places, relative regional susceptibilities are a critical unknown for policy planning. Tests for SARS-CoV-2 infection or antibodies are indicative but unreliable measures of exposure. Here instead, for four highly-affected countries, we determine population susceptibilities by directly comparing country-wide observed epidemic dynamics data with that of their main metropolitan regions. We find significant susceptibility reductions in the metropolitan regions as a result of earlier seeding, with a relatively longer phase of exponential growth before the introduction of public health interventions. During the post-growth phase, the lower susceptibility of these regions contributed to the decline in cases, independent of intervention effects. Forward projections indicate that non-metropolitan regions will be more affected during recurrent epidemic waves compared with the initially heavier-hit metropolitan regions. Our findings have consequences for disease forecasts and resource utilisation.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jie Zhu ◽  
Blanca Gallego

AbstractEpidemic models are being used by governments to inform public health strategies to reduce the spread of SARS-CoV-2. They simulate potential scenarios by manipulating model parameters that control processes of disease transmission and recovery. However, the validity of these parameters is challenged by the uncertainty of the impact of public health interventions on disease transmission, and the forecasting accuracy of these models is rarely investigated during an outbreak. We fitted a stochastic transmission model on reported cases, recoveries and deaths associated with SARS-CoV-2 infection across 101 countries. The dynamics of disease transmission was represented in terms of the daily effective reproduction number ($$R_t$$ R t ). The relationship between public health interventions and $$R_t$$ R t was explored, firstly using a hierarchical clustering algorithm on initial $$R_t$$ R t patterns, and secondly computing the time-lagged cross correlation among the daily number of policies implemented, $$R_t$$ R t , and daily incidence counts in subsequent months. The impact of updating $$R_t$$ R t every time a prediction is made on the forecasting accuracy of the model was investigated. We identified 5 groups of countries with distinct transmission patterns during the first 6 months of the pandemic. Early adoption of social distancing measures and a shorter gap between interventions were associated with a reduction on the duration of outbreaks. The lagged correlation analysis revealed that increased policy volume was associated with lower future $$R_t$$ R t (75 days lag), while a lower $$R_t$$ R t was associated with lower future policy volume (102 days lag). Lastly, the outbreak prediction accuracy of the model using dynamically updated $$R_t$$ R t produced an average AUROC of 0.72 (0.708, 0.723) compared to 0.56 (0.555, 0.568) when $$R_t$$ R t was kept constant. Monitoring the evolution of $$R_t$$ R t during an epidemic is an important complementary piece of information to reported daily counts, recoveries and deaths, since it provides an early signal of the efficacy of containment measures. Using updated $$R_t$$ R t values produces significantly better predictions of future outbreaks. Our results found variation in the effect of early public health interventions on the evolution of $$R_t$$ R t over time and across countries, which could not be explained solely by the timing and number of the adopted interventions.


Sign in / Sign up

Export Citation Format

Share Document