scholarly journals Soil bacterial community as impacted by addition of rice straw and biochar

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhiqiang Tang ◽  
Liying Zhang ◽  
Na He ◽  
Diankai Gong ◽  
Hong Gao ◽  
...  

AbstractThe application of straw and biochar can effectively improve soil quality, but whether such application impacts paddy soil bacterial community development remains to be clarified. Herein, the impacts of three different field amendment strategies were assessed including control (CK) treatment, rice straw (RS) application (9000 kg ha−1), and biochar (BC) application (3150 kg ha−1). Soil samples were collected at five different stages of rice growth, and the bacterial communities therein were characterized via high-throughput 16S rDNA sequencing. The results of these analyses revealed that soil bacterial communities were dominated by three microbial groups (Chloroflexi, Proteobacteria and Acidobacteria). Compared with the CK samples, Chloroflexi, Actinobacteria, Nitrospirae and Gemmatimonadetes levels were dominated phyla in the RS treatment, and Acidobacteria, Actinobacteria, Nitrospirae and Patescibacteria were dominated phyla in the BC treatment. Compared with the RS samples, Chloroflexi, Acidobacteria, Actinobacteria, and Verrucomicrobia levels were increased, however, Proteobacteria, Gemmatimonadetes, Nitrospirae, and Firmicute levels were decreased in the BC samples. Rhizosphere soil bacterial diversity rose significantly following RS and BC amendment, and principal component analyses confirmed that there were significant differences in soil bacterial community composition among treatment groups when comparing all stages of rice growth other than the ripening stage. Relative to the CK treatment, Gemmatimonadaceae, Sphingomonadaceae, Thiovulaceae, Burkholderiaceae, and Clostridiaceae-1 families were dominant following the RS application, while Thiovulaceae and uncultured-bacterium-o-C0119 were dominant following the BC application. These findings suggest that RS and BC application can improve microbial diversity and richness in paddy rice soil in Northeast China.

Author(s):  
Yinhong Hu ◽  
Weiwei Yu ◽  
Bowen Cui ◽  
Yuanyuan Chen ◽  
Hua Zheng ◽  
...  

Human disturbance and vegetation are known to affect soil microorganisms. However, the interacting effects of pavement and plant species on soil bacterial communities have received far less attention. In this study, we collected soil samples from pine (Pinus tabuliformis Carr.), ash (Fraxinus chinensis), and maple (Acer truncatum Bunge) stands that grew in impervious, pervious, and no pavement blocks to investigate the way pavement, tree species, and their interaction influence soil bacterial communities by modifying soil physicochemical properties. Soil bacterial community composition and diversity were evaluated by bacterial 16S amplicon sequencing. The results demonstrated that soil bacterial community composition and diversity did differ significantly across pavements, but not with tree species. The difference in soil bacterial community composition across pavements was greater in pine stands than ash and maple stands. Soil bacterial diversity and richness indices decreased beneath impervious pavement in pine stands, and only bacterial richness indices decreased markedly in ash stands, but neither showed a significant difference across pavements in maple stands. In addition, bacterial diversity did not differ dramatically between pervious pavement and no pavement soil. Taken together, these results suggest that pavement overwhelmed the effects of tree species on soil bacterial communities, and had a greater effect on soil bacterial communities in pine stands, followed by ash and maple stands. This study highlights the importance of anthropogenic disturbance, such as pavement, which affects soil microbial communities.


PeerJ ◽  
2019 ◽  
Vol 7 ◽  
pp. e7304
Author(s):  
Xingjia Xiang ◽  
Sean M. Gibbons ◽  
He Li ◽  
Haihua Shen ◽  
Haiyan Chu

Background Changes in aboveground community composition and diversity following shrub encroachment have been studied extensively. Recently, shrub encroachment was associated with differences in belowground bacterial communities relative to non-encroached grassland sites hundreds of meters away. This spatial distance between grassland and shrub sites left open the question of how soil bacterial communities associated with different vegetation types might differ within the same plot location. Methods We examined soil bacterial communities between shrub-encroached and adjacent (one m apart) grassland soils in Chinese Inner Mongolian, using high-throughput sequencing method (Illumina, San Diego, CA, USA). Results Shrub-encroached sites were associated with dramatic restructuring of soil bacterial community composition and predicted metabolic function, with significant increase in bacterial alpha-diversity. Moreover, bacterial phylogenic structures showed clustering in both shrub-encroached and grassland soils, suggesting that each vegetation type was associated with a unique and defined bacterial community by niche filtering. Finally, soil organic carbon (SOC) was the primary driver varied with shifts in soil bacterial community composition. The encroachment was associated with elevated SOC, suggesting that shrub-mediated shifts in SOC might be responsible for changes in belowground bacterial community. Discussion This study demonstrated that shrub-encroached soils were associated with dramatic restructuring of bacterial communities, suggesting that belowground bacterial communities appear to be sensitive indicators of vegetation type. Our study indicates that the increased shrub-encroached intensity in Inner Mongolia will likely trigger large-scale disruptions in both aboveground plant and belowground bacterial communities across the region.


Author(s):  
Weiwei Yu ◽  
Yinhong Hu ◽  
Bowen Cui ◽  
Yuanyuan Chen ◽  
Xiaoke Wang

Pavements have remarkable effects on topsoil micro-organisms, but it remains unclear how subsoil microbial communities respond to pavements. In this study, ash trees (Fraxinus Chinensis) were planted on pervious pavement (PP), impervious pavement (IPP), and non-pavement (NP) plots. After five years, we determined the soil bacterial community composition and diversity by high-throughput sequencing of the bacterial 16S rRNA gene. The results of our field experiment reveal that the presence of pavement changed soil bacterial community composition and decreased the Shannon index, but had no impact on the Chao 1 at the 0–20 cm layer. However, we achieved the opposite result at a depth of 20–80 cm. Furthermore, there was a significant difference in bacterial community composition using the Shannon index and the Chao 1 at the 80–100 cm layer. Soil total carbon (TC), total nitrogen (TN), available phosphorus (AP), NO3−-N, and available potassium (AK) were the main factors that influenced soil bacterial composition and diversity across different pavements. Soil bacterial composition and diversity had no notable difference between PP and IPPs at different soil layers. Our results strongly indicate that pavements have a greater impact on topsoil bacterial communities than do subsoils, and PPs did not provide a better habitat for micro-organisms when compared to IPPs in the short term.


2021 ◽  
Vol 11 (3) ◽  
pp. 918
Author(s):  
Lingzi Mo ◽  
Augusto Zanella ◽  
Xiaohua Chen ◽  
Bin Peng ◽  
Jiahui Lin ◽  
...  

Continuing nitrogen (N) deposition has a wide-ranging impact on terrestrial ecosystems. To test the hypothesis that, under N deposition, bacterial communities could suffer a negative impact, and in a relatively short timeframe, an experiment was carried out for a year in an urban area featuring a cover of Bermuda grass (Cynodon dactylon) and simulating environmental N deposition. NH4NO3 was added as external N source, with four dosages (N0 = 0 kg N ha−2 y−1, N1 = 50 kg N ha−2 y−1, N2 = 100 kg N ha−2 y−1, N3 = 150 kg N ha−2 y−1). We analyzed the bacterial community composition after soil DNA extraction through the pyrosequencing of the 16S rRNA gene amplicons. N deposition resulted in soil bacterial community changes at a clear dosage-dependent rate. Soil bacterial diversity and evenness showed a clear trend of time-dependent decline under repeated N application. Ammonium nitrogen enrichment, either directly or in relation to pH decrease, resulted in the main environmental factor related to the shift of taxa proportions within the urban green space soil bacterial community and qualified as a putative important driver of bacterial diversity abatement. Such an impact on soil life induced by N deposition may pose a serious threat to urban soil ecosystem stability and surrounding areas.


2009 ◽  
Vol 75 (15) ◽  
pp. 5111-5120 ◽  
Author(s):  
Christian L. Lauber ◽  
Micah Hamady ◽  
Rob Knight ◽  
Noah Fierer

ABSTRACT Soils harbor enormously diverse bacterial populations, and soil bacterial communities can vary greatly in composition across space. However, our understanding of the specific changes in soil bacterial community structure that occur across larger spatial scales is limited because most previous work has focused on either surveying a relatively small number of soils in detail or analyzing a larger number of soils with techniques that provide little detail about the phylogenetic structure of the bacterial communities. Here we used a bar-coded pyrosequencing technique to characterize bacterial communities in 88 soils from across North and South America, obtaining an average of 1,501 sequences per soil. We found that overall bacterial community composition, as measured by pairwise UniFrac distances, was significantly correlated with differences in soil pH (r = 0.79), largely driven by changes in the relative abundances of Acidobacteria, Actinobacteria, and Bacteroidetes across the range of soil pHs. In addition, soil pH explains a significant portion of the variability associated with observed changes in the phylogenetic structure within each dominant lineage. The overall phylogenetic diversity of the bacterial communities was also correlated with soil pH (R2 = 0.50), with peak diversity in soils with near-neutral pHs. Together, these results suggest that the structure of soil bacterial communities is predictable, to some degree, across larger spatial scales, and the effect of soil pH on bacterial community composition is evident at even relatively coarse levels of taxonomic resolution.


Forests ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 51 ◽  
Author(s):  
Jiangmei Qiu ◽  
Jianhua Cao ◽  
Gaoyong Lan ◽  
Yueming Liang ◽  
Hua Wang ◽  
...  

Land use patterns can change the structure of soil bacterial communities. However, there are few studies on the effects of land use patterns coupled with soil depth on soil bacterial communities in the karst graben basin of Yunnan province, China. Consequently, to reveal the structure of the soil bacterial community at different soil depths across land use changes in the graben basins of the Yunnan plateau, the relationship between soil bacterial communities and soil physicochemical properties was investigated for a given area containing woodland, shrubland, and grassland in Yunnan province by using next-generation sequencing technologies coupled with soil physicochemical analysis. Our results indicated that the total phosphorus (TP), available potassium (AK), exchangeable magnesium (E-Mg), and electrical conductivity (EC) in the grassland were significantly higher than those in the woodland and shrubland, yet the total nitrogen (TN) and soil organic carbon (SOC) in the woodland were higher than those in the shrubland and grassland. Proteobacteria, Verrucomicrobia, and Acidobacteria were the dominant bacteria, and their relative abundances were different in the three land use types. SOC, TN, and AK were the most important factors affecting soil bacterial communities. Land use exerts strong effects on the soil bacterial community structure in the soil’s surface layer, and the effects of land use attenuation decrease with soil depth. The nutrient content of the soil surface layer was higher than that of the deep layer, which was more suitable for the survival and reproduction of bacteria in the surface layer.


Sign in / Sign up

Export Citation Format

Share Document