scholarly journals Design, synthesis, biological evaluation, and molecular modeling studies of pyrazole-benzofuran hybrids as new α-glucosidase inhibitor

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fateme Azimi ◽  
Homa Azizian ◽  
Mohammad Najafi ◽  
Ghadamali Khodarahmi ◽  
Lotfollah Saghaei ◽  
...  

AbstractIn this work, new derivatives of biphenyl pyrazole-benzofuran hybrids were designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2–164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 μM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features, used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.

2021 ◽  
Author(s):  
Fateme Azimi ◽  
Homa Azizian ◽  
Mohammad Najafi ◽  
Ghadamali khodarahmi ◽  
Motahareh hassanzadeh ◽  
...  

Abstract In this work, new derivatives of biphenyl pyrazole-benzofuran hybrids designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2–164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 µM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 µM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.


2016 ◽  
Vol 71 (3) ◽  
pp. 205-210 ◽  
Author(s):  
Ali Almasirad ◽  
Loghman Firoozpour ◽  
Maliheh Nejati ◽  
Najmeh Edraki ◽  
Omidreza Firuzi ◽  
...  

AbstractA series of novel 1,3,4-thiadiazole derivatives bearing an amide moiety were designed, synthesized, and evaluated for their in vitro antitumor activities against HL-60, SKOV-3 and MOLT-4 human tumor cell lines by MTT assay. Ethyl 2-((5-(4-methoxybenzamido)-1,3,4-thiadiazol-2-yl)thio)acetate (5f) showed the best inhibitory effect against SKOV-3 cells, with an IC50 value of 19.5 μm. In addition, the acridine orange/ethidium bromide staining assay in SKOV-3 cells suggested that the cytotoxic activity of 5f occurs via apoptosis.


2018 ◽  
Vol 5 (1) ◽  
pp. 28-32
Author(s):  
Amuthavalli A ◽  
Prakash B ◽  
Velmurugan R

New hetero annulated indoles were synthesized and structurally characterized by spectral means. In order to understand the nature of interactions of these molecules, we carried out molecular docking studies using the protein kinase CK2 inhibitors. The docking results provided some useful information for the futuredesign of more potent inhibitors. The in vitro cytotoxicity was evaluated for all the new compounds by MTT assay against HeLa and compared with the standard drug ellipticine. All the compounds showed moderate to potent activity against the cell lines. The preliminary structure–activity relationships were carried out.


2020 ◽  
Vol 32 (12) ◽  
pp. 3209-3218
Author(s):  
K. Praveen Kumar ◽  
Y. Prashanthi ◽  
G. Rambabu ◽  
Md. Ataur Rahman ◽  
J.S. Yadav

In this study, we report the design, synthesis and the biological evaluation of 19 analogues of 2-mercapto benzoxazole coupled benzyl triazoles (BOTs) based on analysis of the binding site and literature of chemical space. These BOTs were evaluated both in vitro and in vivo for their anti-inflammatory activity. Eleven compounds showed less than 10 μM in vitro COX-2 enzyme activities. The most potent analogue among the BOT analogues were BOT15, BOT3 and BOT19 with IC50 3.40 μM, 4.50 μM and 4.57 μM respectively against COX-2. The in vivo anti-inflammatory activity of two BOTs has significantly higher than that of standard drug, ibuprofen. 2-Mercapto benzoxazole coupled benzyl triazoles (BOTs) were also tested for their antioxidant capacity and proved to be an as active scavenger, better than ascorbic acid.


Molecules ◽  
2020 ◽  
Vol 25 (3) ◽  
pp. 489
Author(s):  
Yan Guo ◽  
Hongyu Yang ◽  
Zhongwei Huang ◽  
Sen Tian ◽  
Qihang Li ◽  
...  

A series of novel compounds 6a–h, 8i–1, 10s–v, and 16a–d were synthesized and evaluated, together with the known analogs 11a–f, for their inhibitory activities towards acetylcholinesterase (AChE) and butyrylcholinesterase (BChE). The inhibitory activities of AChE and BChE were evaluated in vitro by Ellman method. The results show that some compounds have good inhibitory activity against AChE and BChE. Among them, compound 8i showed the strongest inhibitory effect on both AChE (eeAChE IC50 = 0.39 μM) and BChE (eqBChE IC50 = 0.28 μM). Enzyme inhibition kinetics and molecular modeling studies have shown that compound 8i bind simultaneously to the peripheral anionic site (PAS) and the catalytic sites (CAS) of AChE and BChE. In addition, the cytotoxicity of compound 8i is lower than that of Tacrine, indicating its potential safety as anti-Alzheimer’s disease (anti-AD) agents. In summary, these data suggest that compound 8i is a promising multipotent agent for the treatment of AD.


2021 ◽  
Author(s):  
Xiangwei Meng ◽  
Yingying Wei ◽  
Binglu Nong ◽  
Huajun Zhao ◽  
xingxian Zhang

Abstract A series of structural modification of curcumol derivatives at C-8 position were designed and synthesized, which structures were confirmed by 1H NMR,13C NMR and HRMS analysis. The tested compounds were evaluated for in vitro antitumor activity against colorectal cancer cell lines SW620, HCT116 and CaCo2. Many of the tested candidates exhibited higher inhibition efficiency than curcumol. Among them, compound 3l shows the best inhibitory effect on the viability of SW620 with IC50 value of 19.90 mM. The structure-activity relationships (SARs) of these derivatives were discussed, which showed that the introduction of amino or aryl groups tended to increase the anti-cancer activity. In addition, compound 3l may inhibit cancer cell proliferation through triggering cell apoptosis.


2019 ◽  
Vol 16 (10) ◽  
pp. 837-845
Author(s):  
Sandhya Jonnala ◽  
Bhaskar Nameta ◽  
Murthy Chavali ◽  
Rajashaker Bantu ◽  
Pallavi Choudante ◽  
...  

A class of 1-((benzo[d]thiazol-2-ylamino)(phenyl)methyl)naphthalen-2-ol derivatives (4a-t) has been synthesized in good yields through a three component coupling reaction. The newly synthesized compounds were evaluated for their in vitro antiproliferative activity against five cell lines such as DU145 (human prostate cancer), MDA-MB-B231 (human breast cancer), SKOV3 (human ovarian cancer), B16-F10 (mouse skin melanoma) and CHO-K1 (Chinese hamster ovary cells), a noncancerous cell line. In vitro inhibitory activity indicates that compounds 4a, 4b, 4c, 4d, 4g, 4j, and 4o exhibited potent anti-proliferative behavior. Among them, compounds 4g, 4j and 4o found to be the most active members exhibiting remarkable growth inhibitory activity. Molecular docking facilitates to investigate the probable binding mode and key active site interactions in tubulins α and β proteins. The docking results are complementary to experimental results.


2020 ◽  
Vol 16 (7) ◽  
pp. 892-902 ◽  
Author(s):  
Aida Iraji ◽  
Mahsima Khoshneviszadeh ◽  
Pegah Bakhshizadeh ◽  
Najmeh Edraki ◽  
Mehdi Khoshneviszadeh

Background: Melanogenesis is a process of melanin synthesis, which is a primary response for the pigmentation of human skin. Tyrosinase is a key enzyme, which catalyzes a ratelimiting step of the melanin formation. Natural products have shown potent inhibitors, but some of these possess toxicity. Numerous synthetic inhibitors have been developed in recent years may lead to the potent anti– tyrosinase agents. Objective: A number of 4-hydroxy-N'-methylenebenzohydrazide analogues with related structure to chalcone and tyrosine were constructed with various substituents at the benzyl ring of the molecule and evaluate as a tyrosinase inhibitor. In addition, computational analysis and metal chelating potential have been evaluated. Methods: Design and synthesized compounds were evaluated for activity against mushroom tyrosinase. The metal chelating capacity of the potent compound was examined using the mole ratio method. Molecular docking of the synthesized compounds was carried out into the tyrosine active site. Results: Novel 4-hydroxy-N'-methylenebenzohydrazide derivatives were synthesized. The two compounds 4c and 4g showed an IC50 near the positive control, led to a drastic inhibition of tyrosinase. Confirming in vitro results were performed via the molecular docking analysis demonstrating hydrogen bound interactions of potent compounds with histatidine-Cu+2 residues with in the active site. Kinetic study of compound 4g showed competitive inhibition towards tyrosinase. Metal chelating assay indicates the mole fraction of 1:2 stoichiometry of the 4g-Cu2+ complex. Conclusion: The findings in the present study demonstrate that 4-Hydroxy-N'- methylenebenzohydrazide scaffold could be regarded as a bioactive core inhibitor of tyrosinase and can be used as an inspiration for further studies in this area.


Author(s):  
Reema Abu Khalaf ◽  
Shorooq Alqazaqi ◽  
Maram Aburezeq ◽  
Dima Sabbah ◽  
Ghadeer Albadawi ◽  
...  

Background: Diabetes mellitus is a chronic metabolic disorder, characterized by hyperglycemia over a prolonged period, disturbance of fat, protein and carbohydrate metabolism, resulting from defective insulin secretion, insulin action or both. Dipeptidyl peptidase-IV (DPP-IV) inhibitors are relatively a new class of oral hypoglycemic agents that reduces the deterioration of gut-derived endogenous incretin hormones that are secreted in response to food ingestion to stimulate the secretion of insulin from beta cells of pancreas. Objective: In this study, synthesis, characterization, and biological assessment of twelve novel phenanthridine sulfonamide derivatives 3a-3l as potential DPP-IV inhibitors was carried out. The target compounds were docked to study the molecular interactions and binding affinities against DPP-IV enzyme. Methods: The synthesized molecules were characterized using 1H-NMR, 13C-NMR, IR, and MS. Quantum-polarized ligand docking (QPLD) was also performed. Results: In vitro biological evaluation of compounds 3a-3l reveals comparable DPP-IV inhibitory activities ranging from 10%-46% at 100 µM concentration, where compound 3d harboring ortho-fluoro moiety exhibited the highest inhibitory activity. QPLD study shows that compounds 3a-3l accommodate DPP-IV binding site and form H-bonding with the R125, E205, E206, S209, F357, R358, K554, W629, S630, Y631, Y662, R669 and Y752 backbones. Conclusion: In conclusion, phenanthridine sulfonamides could serve as potential DPP-IV inhibitors that require further structural optimization in order to enhance their inhibitory activity.


Sign in / Sign up

Export Citation Format

Share Document