scholarly journals Design and synthesis of novel pyrazole-benzofuran hybrids: in vitro α-glucosidase inhibitory activity, kinetic and molecular modeling study

Author(s):  
Fateme Azimi ◽  
Homa Azizian ◽  
Mohammad Najafi ◽  
Ghadamali khodarahmi ◽  
Motahareh hassanzadeh ◽  
...  

Abstract In this work, new derivatives of biphenyl pyrazole-benzofuran hybrids designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2–164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 µM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 µM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fateme Azimi ◽  
Homa Azizian ◽  
Mohammad Najafi ◽  
Ghadamali Khodarahmi ◽  
Lotfollah Saghaei ◽  
...  

AbstractIn this work, new derivatives of biphenyl pyrazole-benzofuran hybrids were designed, synthesized and evaluated in vitro through enzymatic assay for inhibitory effect against α-glucosidase activity. Newly identified inhibitors were found to be four to eighteen folds more active with IC50 values in the range of 40.6 ± 0.2–164.3 ± 1.8 µM, as compared to the standard drug acarbose (IC50 = 750.0 ± 10.0 μM). Limited Structure-activity relationship was established. A kinetic binding study indicated that most active compound 8e acted as the competitive inhibitors of α-glucosidase with Ki = 38 μM. Molecular docking has also been performed to find the interaction modes responsible for the desired inhibitory activity. As expected, all pharmacophoric features, used in the design of the hybrid, are involved in the interaction with the active site of the enzyme. In addition, molecular dynamic simulations showed compound 8e oriented vertically into the active site from mouth to the bottom and stabilized the enzyme domains by interacting with the interface of domain A and domain B and the back side of the active site while acarbose formed non-binding interaction with the residue belong to the domain A of the enzyme.


2021 ◽  
Vol 22 (17) ◽  
pp. 9447
Author(s):  
Pratibha Magar ◽  
Oscar Parravicini ◽  
Šárka Štěpánková ◽  
Katarina Svrčková ◽  
Adriana D. Garro ◽  
...  

A series of 14 target benzyl [2-(arylsulfamoyl)-1-substituted-ethyl]carbamates was prepared by multi-step synthesis and characterized. All the final compounds were tested for their ability to inhibit acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) in vitro, and the selectivity index (SI) was determined. Except for three compounds, all compounds showed strong preferential inhibition of BChE, and nine compounds were even more active than the clinically used rivastigmine. Benzyl {(2S)-1-[(2-methoxybenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5k), benzyl {(2S)-1-[(4-chlorobenzyl)sulfamoyl]-4-methylpentan-2-yl}carbamate (5j), and benzyl [(2S)-1-(benzylsulfamoyl)-4-methylpentan-2-yl]carbamate (5c) showed the highest BChE inhibition (IC50 = 4.33, 6.57, and 8.52 µM, respectively), indicating that derivatives 5c and 5j had approximately 5-fold higher inhibitory activity against BChE than rivastigmine, and 5k was even 9-fold more effective than rivastigmine. In addition, the selectivity index of 5c and 5j was approx. 10 and that of 5k was even 34. The process of carbamylation and reactivation of BChE was studied for the most active derivatives 5k, 5j. The detailed information about the mode of binding of these compounds to the active site of both BChE and AChE was obtained in a molecular modeling study. In this study, combined techniques (docking, molecular dynamic simulations, and QTAIM (quantum theory of atoms in molecules) calculations) were employed.


2020 ◽  
Vol 7 (Supplement_1) ◽  
pp. S643-S643
Author(s):  
Maria F Mojica ◽  
Christopher Bethel ◽  
Emilia Caselli ◽  
Magdalena A Taracila ◽  
Fabio Prati ◽  
...  

Abstract Background Catalytic mechanisms of serine β-lactamases (SBL; classes A, C and D) and metallo-β-lactamases (MBLs) have directed divergent strategies towards inhibitor design. SBL inhibitors act as high affinity substrates that -as in BATSIs- form a reversible, dative covalent bond with the conserved active site Ser. MBL inhibitors bind the active-site Zn2+ ions and displace the nucleophilic OH-. Herein, we explore the efficacy of a series of BATSI compounds with a free-thiol group at inhibiting both SBL and MBL. Methods Exploratory compounds were synthesized using stereoselective homologation of (+) pinandiol boronates to introduce the amino group on the boron-bearing carbon atom, which was subsequently acylated with mercaptopropanoic acid. Representative SBL (KPC-2, ADC-7, PDC-3 and OXA-23) and MBL (IMP-1, NDM-1 and VIM-2) were purified and used for the kinetic characterization of the BATSIs. In vitro activity was evaluated by a modified time-kill curve assay, using SBL and MBL-producing strains. Results Kinetic assays revealed that IC50 values ranged from 1.3 µM to >100 µM for this series. The best compound, s08033, demonstrated inhibitory activity against KPC-2, VIM-2, ADC-7 and PDC-3, with IC50 in the low μM range. Reduction of at least 1.5 log10-fold of viable cell counts upon exposure to sub-lethal concentrations of antibiotics (AB) + s08033, compared to the cells exposed to AB alone, demonstrated the microbiological activity of this novel compound against SBL- and MBL-producing E. coli (Table 1). Table 1 Conclusion Addition of a free-thiol group to the BATSI scaffold increases the range of these compounds resulting in a broad-spectrum inhibitor toward clinically important carbapenemases and cephalosporinases. Disclosures Robert A. Bonomo, MD, Entasis, Merck, Venatorx (Research Grant or Support)


2021 ◽  
Vol 19 (6) ◽  
pp. 1365-1377
Author(s):  
Arun K. Ghosh ◽  
Srinivasa Rao Allu ◽  
Guddeti Chandrashekar Reddy ◽  
Adriana Gamboa Lopez ◽  
Patricia Mendez ◽  
...  

Enantioselective syntheses of C-6 modified derivatives of herboxidiene and their biological evaluation in splicing inhibitory assay.


2014 ◽  
Vol 50 (4) ◽  
pp. 851-858 ◽  
Author(s):  
Isabela Moreira Baumgratz de Paula ◽  
Flávia Costa Moraes ◽  
Orlando Vieira de Souza ◽  
Célia Hitomi Yamamoto

Rosmarinus officinalis, which belongs to the Lamiaceaefamily, is a species of medicinal flora with therapeutic properties. In order to exploit the benefits of these properties, a mouthwash formulation was developed, with careful selection of raw materials to meet pharmacotechnical requirements. Extracts of the plant were incorporated into a mouthwash, which was shown to have inhibitory action in vitro against the micro-organisms commonly found in periodontics. Controls for assessing the quality of the drugs were carried out, quantifying phenols and flavonoids as chemical markers. Mouthwash solutions were formulated containing 0.1, 5 and 10% ethanol extract of R. officinalis; and 0.05, 5 and 10% of the hexane fraction of R. officinalis. In order to evaluate synergism, ethanol extract and hexane fraction were also added to formulations containing 0.05% sodium fluoride and 0.12% chlorhexidine digluconate. These formulations were assessed for inhibitory effect against the specific microorganisms involved in the process of bacterial plaque formation, S. mutans(ATCC25175) and C. albicans(ATCC 10231), frequently found in cases of oral infections. The agar diffusion method was used to evaluate the inhibitory activity of extracts and formulations. All mouthwash solutions displayed inhibitory activity having higher sensitivity to S. mutansfor the 5% ethanol extract+0.05% sodium fluoride, and greater sensitivity to C. albicansfor the 10% hexane fraction. Results were characterized by the appearance of a growth inhibition halo, justifying the utilization and association of extracts of R. officinalis.


2013 ◽  
Vol 49 (4) ◽  
pp. 803-809
Author(s):  
Monica Lacerda Lopes Martins ◽  
Henrique Poltronieri Pacheco ◽  
Iara Giuberti Perini ◽  
Dominik Lenz ◽  
Tadeu Uggere de Andrade ◽  
...  

In 1820, French naturalist August Saint Hillaire, during a visit in Espírito Santo (ES), a state in southeastern Brazil, reported a popular use of Cyperaceae species as antidote to snake bites. The plant may even have a hypotensive effect, though it was never properly researched. The in vitro inhibitory of the angiotensin converting enzyme (ACE) activity of eigth ethanolic extracts of Cyperaceae was evaluated by colorimetric assay. Total phenolic and flavonoids were determined using colorimetric assay. The hypotensive effect of the active specie (Rhychonospora exaltata, ERE) and the in vivo ACE assay was measured in vivo using male Wistar Kyoto (ERE, 0.01-100mg/kg), with acetylcholine (ACh) as positive control (5 µg/kg, i.v.). The evaluation of ACE in vivo inhibitory effect was performed comparing the mean arterial pressure before and after ERE (10 mg/kg) in animals which received injection of angiotensin I (ANG I; 0,03, 03 and 300 µg/kg, i.v.). Captopril (30 mg/kg) was used as positive control. Bulbostylis capillaris (86.89 ± 15.20%) and ERE (74.89 ± 11.95%, ERE) were considered active in the in vitro ACE inhibition assay, at 100 µg/mL concentration. ACh lead to a hypotensive effect before and after ERE's curve (-40±5% and -41±3%). ERE showed a dose-dependent hypotensive effect and a in vivo ACE inhibitory effect. Cyperaceae species showed an inhibitory activity of ACE, in vitro, as well as high content of total phenolic and flavonoids. ERE exhibited an inhibitory effect on both in vitro and in vivo ACE. The selection of species used in popular medicine as antidotes, along with the in vitro assay of ACE inhibition, might be a biomonitoring method for the screening of new medicinal plants with hypotensive properties.


Author(s):  
Yucheng Cao ◽  
Kaiyi Wang ◽  
Jiali Wang ◽  
Haoran Cheng ◽  
Mengxin Ma ◽  
...  

Aim: With the increasing abuse of antibacterial drugs, multidrug-resistant bacteria have become a burden on human health and the healthcare system. To find alternative compounds effective against hospital-acquired methicillin-resistant Staphylococcus aureus (HA-MRSA), novel derivatives of ocotillol were synthesized. Methods & Results: Ocotillol derivatives with polycyclic nitrogen-containing groups were synthesized and evaluated for in vitro antibacterial activity. Compounds 36–39 exhibited potent antibacterial activity against hospital-acquired MRSA, with MIC = 8–64 μg/ml. Additionally, a combination of compound 37 and the commercially available antibiotic kanamycin showed synergistic inhibitory effects, with a fractional inhibitory concentration index of ≤0.375. Conclusion: Compound 37 has a strong inhibitory effect, and this derivative has potential for use as a pharmacological tool to explore antibacterial mechanisms.


INDIAN DRUGS ◽  
2017 ◽  
Vol 54 (02) ◽  
pp. 62-68
Author(s):  
S Mhatre ◽  
◽  
A. Bhagit ◽  
R. P Yadav

Pancreatic lipase inhibitory effect of some edible spices in light of percent inhibition, efficacy, reversibility/ irreversibility and effect of pH on inhibition is presented here. Lipase inhibitory activities of methanolic extracts of eighteen spices were evaluated. Extracts of Zanthoxylum armatum, Cinnamomum tamala, Syzygium aromaticum and Myristica fragrans were considered to be of high potency in synthetic substrate assay. Only Syzygium aromaticum showed high potency in natural substrate based lipase assay. Zanthoxylum armatum extract displayed lowest IC50 of 9.0 μg/mL. On dialysis, all extracts lost their lipase inhibitory activity indicating reversible nature of inhibition. pH significantly affected the performance of spice extracts during inhibition of pancreatic lipase. Most of the extracts lost their pancreatic lipase inhibitory activity at pH 3.0 with the exception of Brassica nigra and Cinnamomum tamala. Results showed spice are good source of pancreatic lipase inhibitor and its potential as drug for obesity can be explored by addressing various issues.


Author(s):  
Emadeldin M. Kamel ◽  
Noha A. Ahmed ◽  
Ashraf A. El-Bassuony ◽  
Omnia E. Hussein ◽  
Barakat Alrashdi ◽  
...  

Background: Various phenolics show inhibitory activity towards xanthine oxidase (XO), an enzyme that generates reactive oxygen species which cause oxidative damage. Objective: This study investigated the XO inhibitory activity of Euphorbia peplus phenolics. Methods: The dried powdered aerial parts of E. peplus were extracted, fractioned and phenolics were isolated and identified. The XO inhibitory activity of E. peplus extract (EPE) and the isolated phenolics was investigated in vitro and in vivo. Results: Three phenolics were isolated from the ethyl acetate fraction of E. peplus. All isolated compounds and the EPE showed inhibitory activity towards XO in vitro. In hyperuricemic rats, EPE and the isolated phenolics decreased uric acid and XO activity. Molecular docking showed the binding modes of isolated phenolics with XO, depicting significant interactions with the active site amino acid residues. Molecular dynamics simulation trajectories confirmed the interaction of isolated phenolics with XO by forming hydrogen bonds with the active site residues. Also, the root mean square (RMS) deviations of XO and phenolics-XO complexes achieved equilibrium and fluctuated during the 10 ns MD simulations. The radius of gyration and solvent accessible surface area investigations showed that different systems were stabilized at ≈ 2500 ps. The RMS fluctuations profile depicted that the drug binding site exhibited a rigidity behavior during the simulation. Conclusion: In vitro, in vivo and computational investigations showed the XO inhibitory activity of E. peplus phenolics. These phenolics might represent promising candidates for the development of XO inhibitors.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2833
Author(s):  
Krešimir Baumann ◽  
Lorena Kordić ◽  
Marko Močibob ◽  
Goran Šinko ◽  
Srđanka Tomić

The development of selective butyrylcholinesterase (BChE) inhibitors may improve the treatment of Alzheimer’s disease by increasing lower synaptic levels of the neurotransmitter acetylcholine, which is hydrolysed by acetylcholinesterase, as well as by overexpressed BChE. An increase in the synaptic levels of acetylcholine leads to normal cholinergic neurotransmission and improved cognitive functions. A series of 14 novel heterocyclic β-d-gluco- and β-d-galactoconjugates were designed and screened for inhibitory activity against BChE. In the kinetic studies, 4 out of 14 compounds showed an inhibitory effect towards BChE, with benzimidazolium and 1-benzylbenzimidazolium substituted β-d-gluco- and β-d-galacto-derivatives in a 10–50 micromolar range. The analysis performed by molecular modelling indicated key residues of the BChE active site, which contributed to a higher affinity toward the selected compounds. Sugar moiety in the inhibitor should enable better blood–brain barrier permeability, and thus increase bioavailability in the central nervous system of these compounds.


Sign in / Sign up

Export Citation Format

Share Document