Photonic devices help reach terahertz frequencies

Author(s):  
Matthew Parker
Nanophotonics ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 1295-1307
Author(s):  
Yulin Wang ◽  
Zhanghua Han ◽  
Yong Du ◽  
Jianyuan Qin

Abstract Toroidal dipole (TD) with weak coupling to the electromagnetic fields offers tremendous potential for advanced design of photonic devices. However, the excitation of high quality (Q) factor TD resonances in these devices is challenging. Here, we investigate ultrahigh-Q factor TD resonances at terahertz frequencies arising from a distortion of symmetry-protected bound states in the continuum (BIC) in all-dielectric metasurface consisting of an array of high-index tetramer clusters. By elaborately arranging the cylinders forming an asymmetric cluster, two distinct TD resonances governed by BIC are excited and identified. One is distinguished as intracluster TD mode that occurs in the interior of tetramer cluster, and the other one is intercluster TD mode that arises from the two neighboring clusters. Such TD resonances can be turned into ultrahigh-Q leaky resonances by controlling the asymmetry of cluster. The low-loss TD resonances with extremely narrow linewidth are very sensitive to the change in the refractive index of the surrounding media, achieving ultrahigh sensitivity level of 489 GHz/RIU. These findings will open up an avenue to develop ultrasensitive photonic sensor in the terahertz regime.


2020 ◽  
Vol 14 (6) ◽  
pp. 411-416
Author(s):  
Nurul Awadah Nadiah Binti Suhaimi ◽  
Izaddeen Kabir Yakasai ◽  
Emeroylariffion Abas ◽  
Shubi Kaijage ◽  
Feroza Begum

Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 210
Author(s):  
Da Teng ◽  
Kai Wang

The waveguiding of terahertz surface plasmons by a GaAs strip-loaded graphene waveguide is investigated based on the effective-index method and the finite element method. Modal properties of the effective mode index, modal loss, and cut-off characteristics of higher order modes are investigated. By modulating the Fermi level, the modal properties of the fundamental mode could be adjusted. The accuracy of the effective-index method is verified by a comparison between the analytical results and numerical simulations. Besides the modal properties, the crosstalk between the adjacent waveguides, which determines the device integration density, is studied. The findings show that the effective-index method is highly valid for analyzing dielectric-loaded graphene plasmon waveguides in the terahertz region and may have potential applications in subwavelength tunable integrated photonic devices.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Denis V. Novitsky ◽  
Dmitry Lyakhov ◽  
Dominik Michels ◽  
Dmitrii Redka ◽  
Alexander A. Pavlov ◽  
...  

AbstractUnique and flexible properties of non-Hermitian photonic systems attract ever-increasing attention via delivering a whole bunch of novel optical effects and allowing for efficient tuning light-matter interactions on nano- and microscales. Together with an increasing demand for the fast and spatially compact methods of light governing, this peculiar approach paves a broad avenue to novel optical applications. Here, unifying the approaches of disordered metamaterials and non-Hermitian photonics, we propose a conceptually new and simple architecture driven by disordered loss-gain multilayers and, therefore, providing a powerful tool to control both the passage time and the wave-front shape of incident light with different switching times. For the first time we show the possibility to switch on and off kink formation by changing the level of disorder in the case of adiabatically raising wave fronts. At the same time, we deliver flexible tuning of the output intensity by using the nonlinear effect of loss and gain saturation. Since the disorder strength in our system can be conveniently controlled with the power of the external pump, our approach can be considered as a basis for different active photonic devices.


2021 ◽  
Author(s):  
Jake Greenfield ◽  
Jessica Wade ◽  
Jochen Brandt ◽  
Xingyuan Shi ◽  
Thomas Penfold ◽  
...  

The dissymmetric interaction between circularly polarised (CP) light and chiral molecules is central to a range of areas, from spectroscopy and imaging to next-generation photonic devices. However, the selectivity in...


Nanophotonics ◽  
2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Qingqing Cheng ◽  
Juncheng Wang ◽  
Ling Ma ◽  
Zhixiong Shen ◽  
Jing Zhang ◽  
...  

AbstractAiry beams exhibit intriguing properties such as nonspreading, self-bending, and self-healing and have attracted considerable recent interest because of their many potential applications in photonics, such as to beam focusing, light-sheet microscopy, and biomedical imaging. However, previous approaches to generate Airy beams using photonic structures have suffered from severe chromatic problems arising from strong frequency dispersion of the scatterers. Here, we design and fabricate a metasurface composed of silicon posts for the frequency range 0.4–0.8 THz in transmission mode, and we experimentally demonstrate achromatic Airy beams exhibiting autofocusing properties. We further show numerically that a generated achromatic Airy-beam-based metalens exhibits self-healing properties that are immune to scattering by particles and that it also possesses a larger depth of focus than a traditional metalens. Our results pave the way to the realization of flat photonic devices for applications to noninvasive biomedical imaging and light-sheet microscopy, and we provide a numerical demonstration of a device protocol.


Nanophotonics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 3965-3975 ◽  
Author(s):  
Dmitry Yu. Fedyanin ◽  
Alexey V. Krasavin ◽  
Aleksey V. Arsenin ◽  
Anatoly V. Zayats

AbstractPlasmonics offers a unique opportunity to break the diffraction limit of light and bring photonic devices to the nanoscale. As the most prominent example, an integrated nanolaser is a key to truly nanoscale photonic circuits required for optical communication, sensing applications and high-density data storage. Here, we develop a concept of an electrically driven subwavelength surface-plasmon-polariton nanolaser, which is based on a novel amplification scheme, with all linear dimensions smaller than the operational free-space wavelength λ and a mode volume of under λ3/30. The proposed pumping approach is based on a double-heterostructure tunneling Schottky barrier diode and gives the possibility to reduce the physical size of the device and ensure in-plane emission so that the nanolaser output can be naturally coupled to a plasmonic or nanophotonic waveguide circuitry. With the high energy efficiency (8% at 300 K and 37% at 150 K), the output power of up to 100 μW and the ability to operate at room temperature, the proposed surface plasmon polariton nanolaser opens up new avenues in diverse application areas, ranging from ultrawideband optical communication on a chip to low-power nonlinear photonics, coherent nanospectroscopy, and single-molecule biosensing.


Sign in / Sign up

Export Citation Format

Share Document