scholarly journals Excess extracellular K+ causes inner hair cell ribbon synapse degeneration

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong-Bo Zhao ◽  
Yan Zhu ◽  
Li-Man Liu

AbstractInner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.

2019 ◽  
Author(s):  
Hong-Bo Zhao ◽  
Yan Zhu ◽  
Li-Man Liu

AbstractInner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.


2021 ◽  
Author(s):  
Feng Song ◽  
Bin Gan ◽  
Na Wang ◽  
Zhe Wang ◽  
An-ting Xu

This study aimed to observe the changes in the cochlea ribbon synapses after repeated exposure to moderate-to-high intensity noise. Guinea pigs received 95 dB SPL white noise exposure 4 hours a day for consecutive 7 days (we regarded it a medium-term and moderate-intensity noise, or MTMI noise). Animals were divided into 4 groups: Control, 1DPN (1-day post noise), 1WPN (1-week post noise), and 1MPN (1-month post noise). Auditory function analysis by ABR and CAP recordings, as well as ribbon synapse morphological analyses by immunohistochemistry (Ctbp2 and PSD95 staining) were performed one day, one week, and one month after noise exposure. After MTMI noise exposure, the amplitudes of auditory brainstem response (ABR) I and III waves were suppressed. The compound action potential (CAP) threshold was elevated, and CAP amplitude was reduced in the 1DPN group. No apparent changes in hair cell shape, arrangement or number were observed, but the number of ribbon synapse was reduced. The 1WPN and 1MPN groups showed that part of ABR and CAP changes recovered, as well as the synapse number. The defects in cochlea auditory function and synapse changes were observed mainly in the high-frequency region. Together, repeated exposure in MTMI noise can cause hidden hearing loss, which is partially reversible after leaving the noise environment; and MTMI noise induced hidden hearing loss is associated with inner hair cell ribbon synapses.


2019 ◽  
Author(s):  
Viacheslav Vasilkov ◽  
Sarah Verhulst

AbstractDamage to the auditory periphery is more widespread than predicted by the gold-standard clinical audiogram. Noise exposure, ototoxicity and aging can destroy cochlear inner-hair-cell afferent synapses and result in a degraded subcortical representation of sound while leaving hearing thresholds unaffected. Damaged afferent synapses, i.e. cochlear synaptopathy, can be quantified using histology, but a differential diagnosis in living humans is difficult: histology cannot be applied and existing auditory evoked potential (AEP) metrics for synaptopathy become insensitive when other sensorineural hearing impairments co-exist (e.g., outer-hair-cell damage associated with elevated hearing thresholds). To develop a non-invasive diagnostic method which quantifies synaptopathy in humans and animals with normal or elevated hearing thresholds, we employ a computational model approach in combination with human AEP and psychoacoustics. We propose the use of a sensorineural hearing loss (SNHL) map which comprises two relative AEP-based metrics to quantify the respective degrees of synaptopathy and OHC damage and evaluate to which degree our predictions of AEP alterations can explain individual data-points in recorded SNHL maps from male and female listeners with normal or elevated audiometric thresholds. We conclude that SNHL maps can offer a more precise diagnostic tool than existing AEP methods for individual assessment of the synaptopathy and OHC-damage aspect of sensorineural hearing loss.Significance StatementHearing loss ranks fourth in global causes for disability and risk factors include noise exposure, ototoxicity and aging. The most vulnerable parts of the cochlea are the inner-hair-cell afferent synapses and their damage (cochlear synaptopathy) results in a degraded subcortical representation of sound. While synaptopathy can be estimated reliably using histology, it cannot be quantified this way in living humans. Secondly, other co-existing sensorineural hearing deficits (e.g., outer-hair-cell damage) can complicate a differential diagnosis. To quantify synaptopathy in humans and animals with normal or elevated hearing thresholds, we adopt a theoretical and interdisciplinary approach. Sensitive diagnostic metrics for synaptopathy are crucial to assess its prevalence in humans, study its impact on sound perception and yield effective hearing restoration strategies.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minfei Qian ◽  
Qixuan Wang ◽  
Zhongying Wang ◽  
Qingping Ma ◽  
Xueling Wang ◽  
...  

It is widely accepted that even a single acute noise exposure at moderate intensity that induces temporary threshold shift (TTS) can result in permanent loss of ribbon synapses between inner hair cells and afferents. However, effects of repeated or chronic noise exposures on the cochlear synapses especially medial olivocochlear (MOC) efferent synapses remain elusive. Based on a weeklong repeated exposure model of bandwidth noise over 2-20 kHz for 2 hours at seven intensities (88 to 106 dB SPL with 3 dB increment per gradient) on C57BL/6J mice, we attempted to explore the dose-response mechanism of prolonged noise-induced audiological dysfunction and cochlear synaptic degeneration. In our results, mice repeatedly exposed to relatively low-intensity noise (88, 91, and 94 dB SPL) showed few changes on auditory brainstem response (ABR), ribbon synapses, or MOC efferent synapses. Notably, repeated moderate-intensity noise exposures (97 and 100 dB SPL) not only caused hearing threshold shifts and the inner hair cell ribbon synaptopathy but also impaired MOC efferent synapses, which might contribute to complex patterns of damages on cochlear function and morphology. However, repeated high-intensity (103 and 106 dB SPL) noise exposures induced PTSs mainly accompanied by damages on cochlear amplifier function of outer hair cells and the inner hair cell ribbon synaptopathy, rather than the MOC efferent synaptic degeneration. Moreover, we observed a frequency-dependent vulnerability of the repeated acoustic trauma-induced cochlear synaptic degeneration. This study provides a sight into the hypothesis that noise-induced cochlear synaptic degeneration involves both afferent (ribbon synapses) and efferent (MOC terminals) pathology. The pattern of dose-dependent pathological changes induced by repeated noise exposure at various intensities provides a possible explanation for the complicated cochlear synaptic degeneration in humans. The underlying mechanisms remain to be studied in the future.


2020 ◽  
Vol 2020 ◽  
pp. 1-9 ◽  
Author(s):  
Wei Zhang ◽  
Zhe Peng ◽  
ShuKui Yu ◽  
Qing-Ling Song ◽  
Teng-Fei Qu ◽  
...  

Tinnitus is a common auditory disease worldwide; it is estimated that more than 10% of all individuals experience this hearing disorder during their lifetime. Tinnitus is sometimes accompanied by hearing loss. However, hearing loss is not acquired in some other tinnitus generations. In this study, we injected adult rats with salicylate sodium (SS) (200 mg/kg/day for 10 days) and found no significant hearing threshold changes at 2, 4, 8, 12, 14, 16, 20, or 24 kHz (all p>0.05). Tinnitus was confirmed in the treated rats via Behaviour Testing of Acoustic Startle Response (ASR) and Gap Prepulse Inhibition Test of Acoustic Startle Reflex (GPIAS). A immunostaining study showed that there is significant loss of anti-CtBP2 puncta (a marker of cochlear inner hair cell (HC) ribbon synapses) in treated animals in apical, middle, and basal turns (all p<0.05). The ABR wave I amplitudes were significantly reduced at 4, 8, 12, 14, 16, and 20 kHz (all p<0.05). No significant losses of outer HCs, inner HCs, or HC cilia were observed (all p>0.05). Thus, our study suggests that loss of cochlear inner HC ribbon synapse after SS exposure is a contributor to the development of tinnitus without changing hearing threshold.


2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Felicia Gilels ◽  
Stephen T. Paquette ◽  
Holly J. Beaulac ◽  
Anwen Bullen ◽  
Patricia M. White

2017 ◽  
Vol 38 (1) ◽  
pp. e1-e12 ◽  
Author(s):  
Naomi F. Bramhall ◽  
Dawn Konrad-Martin ◽  
Garnett P. McMillan ◽  
Susan E. Griest

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Juan Hong ◽  
Yan Chen ◽  
Yanping Zhang ◽  
Jieying Li ◽  
Liujie Ren ◽  
...  

Cochlear inner hair cell (IHC) ribbon synapses play an important role in sound encoding and neurotransmitter release. Previous reports show that both noise and aminoglycoside exposures lead to reduced numbers and morphologic changes of synaptic ribbons. In this work, we determined the distribution of N-methyl-D-aspartate receptors (NMDARs) and their role in the gentamicin-induced pathological changes of cochlear IHC ribbon synaptic elements. In normal mature mouse cochleae, the majority of NMDARs were distributed on the modiolar side of IHCs and close to the IHC nuclei region, while most of synaptic ribbons and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) were located on neural terminals closer to the IHC basal poles. After gentamicin exposure, the NMDARs increased and moved towards the IHC basal poles. At the same time, synaptic ribbons and AMPARs moved toward the IHC bundle poles on the afferent dendrites. The number of ribbon synapse decreased, and this was accompanied by increased auditory brainstem response thresholds and reduced wave I amplitudes. NMDAR antagonist MK801 treatment reduced the gentamicin-induced hearing loss and the pathological changes of IHC ribbon synapse, suggesting that NMDARs were involved in gentamicin-induced ototoxicity by regulating the number and distribution of IHC ribbon synapses.


Sign in / Sign up

Export Citation Format

Share Document