scholarly journals Hidden hearing loss is associated with loss of ribbon synapses of cochlea inner hair cells

2021 ◽  
Author(s):  
Feng Song ◽  
Bin Gan ◽  
Na Wang ◽  
Zhe Wang ◽  
An-ting Xu

This study aimed to observe the changes in the cochlea ribbon synapses after repeated exposure to moderate-to-high intensity noise. Guinea pigs received 95 dB SPL white noise exposure 4 hours a day for consecutive 7 days (we regarded it a medium-term and moderate-intensity noise, or MTMI noise). Animals were divided into 4 groups: Control, 1DPN (1-day post noise), 1WPN (1-week post noise), and 1MPN (1-month post noise). Auditory function analysis by ABR and CAP recordings, as well as ribbon synapse morphological analyses by immunohistochemistry (Ctbp2 and PSD95 staining) were performed one day, one week, and one month after noise exposure. After MTMI noise exposure, the amplitudes of auditory brainstem response (ABR) I and III waves were suppressed. The compound action potential (CAP) threshold was elevated, and CAP amplitude was reduced in the 1DPN group. No apparent changes in hair cell shape, arrangement or number were observed, but the number of ribbon synapse was reduced. The 1WPN and 1MPN groups showed that part of ABR and CAP changes recovered, as well as the synapse number. The defects in cochlea auditory function and synapse changes were observed mainly in the high-frequency region. Together, repeated exposure in MTMI noise can cause hidden hearing loss, which is partially reversible after leaving the noise environment; and MTMI noise induced hidden hearing loss is associated with inner hair cell ribbon synapses.

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Hong-Bo Zhao ◽  
Yan Zhu ◽  
Li-Man Liu

AbstractInner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Minfei Qian ◽  
Qixuan Wang ◽  
Zhongying Wang ◽  
Qingping Ma ◽  
Xueling Wang ◽  
...  

It is widely accepted that even a single acute noise exposure at moderate intensity that induces temporary threshold shift (TTS) can result in permanent loss of ribbon synapses between inner hair cells and afferents. However, effects of repeated or chronic noise exposures on the cochlear synapses especially medial olivocochlear (MOC) efferent synapses remain elusive. Based on a weeklong repeated exposure model of bandwidth noise over 2-20 kHz for 2 hours at seven intensities (88 to 106 dB SPL with 3 dB increment per gradient) on C57BL/6J mice, we attempted to explore the dose-response mechanism of prolonged noise-induced audiological dysfunction and cochlear synaptic degeneration. In our results, mice repeatedly exposed to relatively low-intensity noise (88, 91, and 94 dB SPL) showed few changes on auditory brainstem response (ABR), ribbon synapses, or MOC efferent synapses. Notably, repeated moderate-intensity noise exposures (97 and 100 dB SPL) not only caused hearing threshold shifts and the inner hair cell ribbon synaptopathy but also impaired MOC efferent synapses, which might contribute to complex patterns of damages on cochlear function and morphology. However, repeated high-intensity (103 and 106 dB SPL) noise exposures induced PTSs mainly accompanied by damages on cochlear amplifier function of outer hair cells and the inner hair cell ribbon synaptopathy, rather than the MOC efferent synaptic degeneration. Moreover, we observed a frequency-dependent vulnerability of the repeated acoustic trauma-induced cochlear synaptic degeneration. This study provides a sight into the hypothesis that noise-induced cochlear synaptic degeneration involves both afferent (ribbon synapses) and efferent (MOC terminals) pathology. The pattern of dose-dependent pathological changes induced by repeated noise exposure at various intensities provides a possible explanation for the complicated cochlear synaptic degeneration in humans. The underlying mechanisms remain to be studied in the future.


2019 ◽  
Author(s):  
Hong-Bo Zhao ◽  
Yan Zhu ◽  
Li-Man Liu

AbstractInner hair cell (IHC) ribbon synapses are the first synapse in the auditory system and can be degenerated by noise and aging, thereby leading to hidden hearing loss (HHL) and other hearing disorders. However, the mechanism underlying this cochlear synaptopathy remains unclear. Here, we report that elevation of extracellular K+, which is a consequence of noise exposure, could cause IHC ribbon synapse degeneration and swelling. Like intensity dependence in noise-induced cochlear synaptopathy, the K+-induced degeneration was dose-dependent, and could be attenuated by BK channel blockers. However, application of glutamate receptor (GluR) agonists caused ribbon swelling but not degeneration. In addition, consistent with synaptopathy in HHL, both K+ and noise exposure only caused IHC but not outer hair cell ribbon synapse degeneration. These data reveal that K+ excitotoxicity can degenerate IHC ribbon synapses in HHL, and suggest that BK channel may be a potential target for prevention and treatment of HHL.


Marine Drugs ◽  
2021 ◽  
Vol 19 (8) ◽  
pp. 443
Author(s):  
Hyunjun Woo ◽  
Min-Kyung Kim ◽  
Sohyeon Park ◽  
Seung-Hee Han ◽  
Hyeon-Cheol Shin ◽  
...  

One of the well-known causes of hearing loss is noise. Approximately 31.1% of Americans between the ages of 20 and 69 years (61.1 million people) have high-frequency hearing loss associated with noise exposure. In addition, recurrent noise exposure can accelerate age-related hearing loss. Phlorofucofuroeckol A (PFF-A) and dieckol, polyphenols extracted from the brown alga Ecklonia cava, are potent antioxidant agents. In this study, we investigated the effect of PFF-A and dieckol on the consequences of noise exposure in mice. In 1,1-diphenyl-2-picrylhydrazyl assay, dieckol and PFF-A both showed significant radical-scavenging activity. The mice were exposed to 115 dB SPL of noise one single time for 2 h. Auditory brainstem response(ABR) threshold shifts 4 h after 4 kHz noise exposure in mice that received dieckol were significantly lower than those in the saline with noise group. The high-PFF-A group showed a lower threshold shift at click and 16 kHz 1 day after noise exposure than the control group. The high-PFF-A group also showed higher hair cell survival than in the control at 3 days after exposure in the apical turn. These results suggest that noise-induced hair cell damage in cochlear and the ABR threshold shift can be alleviated by dieckol and PFF-A in the mouse. Derivatives of these compounds may be applied to individuals who are inevitably exposed to noise, contributing to the prevention of noise-induced hearing loss with a low probability of adverse effects.


2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Juan Hong ◽  
Yan Chen ◽  
Yanping Zhang ◽  
Jieying Li ◽  
Liujie Ren ◽  
...  

Cochlear inner hair cell (IHC) ribbon synapses play an important role in sound encoding and neurotransmitter release. Previous reports show that both noise and aminoglycoside exposures lead to reduced numbers and morphologic changes of synaptic ribbons. In this work, we determined the distribution of N-methyl-D-aspartate receptors (NMDARs) and their role in the gentamicin-induced pathological changes of cochlear IHC ribbon synaptic elements. In normal mature mouse cochleae, the majority of NMDARs were distributed on the modiolar side of IHCs and close to the IHC nuclei region, while most of synaptic ribbons and α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) were located on neural terminals closer to the IHC basal poles. After gentamicin exposure, the NMDARs increased and moved towards the IHC basal poles. At the same time, synaptic ribbons and AMPARs moved toward the IHC bundle poles on the afferent dendrites. The number of ribbon synapse decreased, and this was accompanied by increased auditory brainstem response thresholds and reduced wave I amplitudes. NMDAR antagonist MK801 treatment reduced the gentamicin-induced hearing loss and the pathological changes of IHC ribbon synapse, suggesting that NMDARs were involved in gentamicin-induced ototoxicity by regulating the number and distribution of IHC ribbon synapses.


2017 ◽  
Author(s):  
Rebecca Susan Dewey ◽  
Deborah A Hall ◽  
Hannah Guest ◽  
Garreth Prendergast ◽  
Christopher J Plack ◽  
...  

BACKGROUND Rodent studies indicate that noise exposure can cause permanent damage to synapses between inner hair cells and high-threshold auditory nerve fibers, without permanently altering threshold sensitivity. These demonstrations of what is commonly known as hidden hearing loss have been confirmed in several rodent species, but the implications for human hearing are unclear. OBJECTIVE Our Medical Research Council–funded program aims to address this unanswered question, by investigating functional consequences of the damage to the human peripheral and central auditory nervous system that results from cumulative lifetime noise exposure. Behavioral and neuroimaging techniques are being used in a series of parallel studies aimed at detecting hidden hearing loss in humans. The planned neuroimaging study aims to (1) identify central auditory biomarkers associated with hidden hearing loss; (2) investigate whether there are any additive contributions from tinnitus or diminished sound tolerance, which are often comorbid with hearing problems; and (3) explore the relation between subcortical functional magnetic resonance imaging (fMRI) measures and the auditory brainstem response (ABR). METHODS Individuals aged 25 to 40 years with pure tone hearing thresholds ≤20 dB hearing level over the range 500 Hz to 8 kHz and no contraindications for MRI or signs of ear disease will be recruited into the study. Lifetime noise exposure will be estimated using an in-depth structured interview. Auditory responses throughout the central auditory system will be recorded using ABR and fMRI. Analyses will focus predominantly on correlations between lifetime noise exposure and auditory response characteristics. RESULTS This paper reports the study protocol. The funding was awarded in July 2013. Enrollment for the study described in this protocol commenced in February 2017 and was completed in December 2017. Results are expected in 2018. CONCLUSIONS This challenging and comprehensive study will have the potential to impact diagnostic procedures for hidden hearing loss, enabling early identification of noise-induced auditory damage via the detection of changes in central auditory processing. Consequently, this will generate the opportunity to give personalized advice regarding provision of ear defense and monitoring of further damage, thus reducing the incidence of noise-induced hearing loss.


2019 ◽  
Vol 707 ◽  
pp. 134268 ◽  
Author(s):  
Huihui Liu ◽  
Jiawen Lu ◽  
Zhongying Wang ◽  
Lei Song ◽  
Xueling Wang ◽  
...  

Author(s):  
Hailong Tu ◽  
Aizhen Zhang ◽  
Xiaolong Fu ◽  
Shiqi Xu ◽  
Xiaohui Bai ◽  
...  

The small muscle protein, x-linked (SMPX) encodes a small protein containing 88 amino acids. Malfunction of this protein can cause a sex-linked non-syndromic hearing loss, named X-linked deafness 4 (DFNX4). Herein, we reported a point mutation and a frameshift mutation in two Chinese families who developed gradual hearing loss with age. To explore the impaired sites in the hearing system and the mechanism of DFNX4, we established and validated an Smpx null mouse model using CRISPR-Cas9. By analyzing auditory brainstem response (ABR), male Smpx null mice showed a progressive hearing loss starting from high frequency at the 3rd month. Hearing loss in female mice was milder and occurred later compared to male mice, which was very similar to human beings. Through morphological analyses of mice cochleas, we found the hair cell bundles progressively degenerated from the shortest row. Cellular edema occurred at the end phase of stereocilia degeneration, followed by cell death. By transfecting exogenous fluorescent Smpx into living hair cells, Smpx was observed to be expressed in stereocilia. Through noise exposure, it was shown that Smpx might participate in maintaining hair cell bundles. This Smpx knock-out mouse might be used as a suitable model to explore the pathology of DFNX4.


2020 ◽  
Vol 21 (12) ◽  
pp. 1216-1224
Author(s):  
Fatemeh Forouzanfar ◽  
Samira Asgharzade

Noise exposure (NE) has been recognized as one of the causes of sensorineural hearing loss (SNHL), which can bring about irreversible damage to sensory hair cells in the cochlea, through the launch of oxidative stress pathways and inflammation. Accordingly, determining the molecular mechanism involved in regulating hair cell apoptosis via NE is essential to prevent hair cell damage. However, the role of microRNAs (miRNAs) in the degeneration of sensory cells of the cochlea during NE has not been so far uncovered. Thus, the main purpose of this study was to demonstrate the regulatory role of miRNAs in the oxidative stress pathway and inflammation induced by NE. In this respect, articles related to noise-induced hearing loss (NIHL), oxidative stress, inflammation, and miRNA from various databases of Directory of Open Access Journals (DOAJ), Google Scholar, PubMed; Library, Information Science & Technology Abstracts (LISTA), and Web of Science were searched and retrieved. The findings revealed that several studies had suggested that up-regulation of miR-1229-5p, miR-451a, 185-5p, 186 and down-regulation of miRNA-96/182/183 and miR-30b were involved in oxidative stress and inflammation which could be used as biomarkers for NIHL. There was also a close relationship between NIHL and miRNAs, but further research is required to prove a causal association between miRNA alterations and NE, and also to determine miRNAs as biomarkers indicating responses to NE.


Sign in / Sign up

Export Citation Format

Share Document