scholarly journals A natural constant predicts survival to maximum age

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Manuel Dureuil ◽  
Rainer Froese

AbstractInformation about the survival of species is important in many ecological applications. Yet, the estimation of a species’ natural mortality rate M remains a major problem in the management and conservation of wild populations, often circumvented by applying empirical equations that relate mortality to other traits that are more easily observed. We show that mean adult M can be approximated from the general law of decay if the average maximum age reached by individuals in a cohort is known. This is possible because the proportion P of individuals surviving to the average maximum age in a cohort is surprisingly similar across a wide range of examined species at 1.5%. The likely reason for the narrow range of P is a universal increase in the rate of mortality near the end of life, providing strong evidence that the evolutionary theories of ageing are the norm in natural populations.

2022 ◽  
Author(s):  
Claire E Couch ◽  
Clinton W Epps

Abstract In recent years, emerging sequencing technologies and computational tools have driven a tidal wave of research on host-associated microbiomes, particularly the gut microbiome. These studies demonstrate numerous connections between the gut microbiome and vital host functions, primarily in humans, model organisms, and domestic animals. As the adaptive importance of the gut microbiome becomes clearer, interest in studying the gut microbiomes of wild populations has increased, in part due to the potential for discovering conservation applications. The study of wildlife gut microbiomes holds many new challenges and opportunities due to the complex genetic, spatial, and environmental structure of wild host populations, and the potential for these factors to interact with the microbiome. The emerging picture of adaptive coevolution in host-microbiome relationships highlights the importance of understanding microbiome variation in the context of host population genetics and landscape heterogeneity across a wide range of host populations. We propose a conceptual framework for understanding wildlife gut microbiomes in relation to landscape variables and host population genetics, including the potential of approaches derived from landscape genetics. We use this framework to review current research, synthesize important trends, highlight implications for conservation, and recommend future directions for research. Specifically, we focus on how spatial structure and environmental variation interact with host population genetics and microbiome variation in natural populations, and what we can learn from how these patterns of covariation differ depending on host ecological and evolutionary traits.


Genetics ◽  
2000 ◽  
Vol 156 (1) ◽  
pp. 457-467 ◽  
Author(s):  
Z W Luo ◽  
S H Tao ◽  
Z-B Zeng

Abstract Three approaches are proposed in this study for detecting or estimating linkage disequilibrium between a polymorphic marker locus and a locus affecting quantitative genetic variation using the sample from random mating populations. It is shown that the disequilibrium over a wide range of circumstances may be detected with a power of 80% by using phenotypic records and marker genotypes of a few hundred individuals. Comparison of ANOVA and regression methods in this article to the transmission disequilibrium test (TDT) shows that, given the genetic variance explained by the trait locus, the power of TDT depends on the trait allele frequency, whereas the power of ANOVA and regression analyses is relatively independent from the allelic frequency. The TDT method is more powerful when the trait allele frequency is low, but much less powerful when it is high. The likelihood analysis provides reliable estimation of the model parameters when the QTL variance is at least 10% of the phenotypic variance and the sample size of a few hundred is used. Potential use of these estimates in mapping the trait locus is also discussed.


Author(s):  
Rubén Sancho ◽  
Ana Guillem-Amat ◽  
Elena López-Errasquín ◽  
Lucas Sánchez ◽  
Félix Ortego ◽  
...  

AbstractThe sterile insect technique (SIT) is widely used in integrated pest management programs for the control of the Mediterranean fruit fly (medfly), Ceratitis capitata. The genetic interactions between the released individuals from the genetic sexing strains (GSS), used for SIT applications worldwide, and wild individuals have not been studied. Under the hypothesis that a number of Vienna GSS individuals released to the field might not be completely sterile and may produce viable offspring, we have analyzed medfly Spanish field populations to evaluate the presence of Vienna strain genetic markers. To this goal, we have used contrasted nuclear and mitochondrial genetic markers, and two novel sets of nuclear polymorphisms with the potential to be markers to discriminate between Vienna and wild individuals. Nuclear Vienna markers located on the 5th chromosome of Vienna males have been found in 2.2% (19 from 875) of the Spanish wild medfly females captured at the area where SIT is applied. In addition, a female-inherited mitochondrial Vienna marker has been found in two from the 19 females showing nuclear Vienna markers. The detection of several of these markers in single individuals represents evidence of the introgression of Vienna strain into natural populations. However, alternative explanations as their presence at low frequency in wild populations in the studied areas cannot be fully discarded. The undesired release of non-fully sterile irradiated GSS individuals into the field and their interactions with wild flies, and the potential environmental implications should be taken into account in the application of the SIT.


Author(s):  
G. Rossini ◽  
A. Caimi ◽  
A. Redaelli ◽  
E. Votta

AbstractA Finite Element workflow for the multiscale analysis of the aortic valve biomechanics was developed and applied to three physiological anatomies with the aim of describing the aortic valve interstitial cells biomechanical milieu in physiological conditions, capturing the effect of subject-specific and leaflet-specific anatomical features from the organ down to the cell scale. A mixed approach was used to transfer organ-scale information down to the cell-scale. Displacement data from the organ model were used to impose kinematic boundary conditions to the tissue model, while stress data from the latter were used to impose loading boundary conditions to the cell level. Peak of radial leaflet strains was correlated with leaflet extent variability at the organ scale, while circumferential leaflet strains varied over a narrow range of values regardless of leaflet extent. The dependency of leaflet biomechanics on the leaflet-specific anatomy observed at the organ length-scale is reflected, and to some extent emphasized, into the results obtained at the lower length-scales. At the tissue length-scale, the peak diastolic circumferential and radial stresses computed in the fibrosa correlated with the leaflet surface area. At the cell length-scale, the difference between the strains in two main directions, and between the respective relationships with the specific leaflet anatomy, was even more evident; cell strains in the radial direction varied over a relatively wide range ($$0.36-0.87$$ 0.36 - 0.87 ) with a strong correlation with the organ length-scale radial strain ($$R^{2}= 0.95$$ R 2 = 0.95 ); conversely, circumferential cell strains spanned a very narrow range ($$0.75-0.88$$ 0.75 - 0.88 ) showing no correlation with the circumferential strain at the organ level ($$R^{2}= 0.02$$ R 2 = 0.02 ). Within the proposed simulation framework, being able to account for the actual anatomical features of the aortic valve leaflets allowed to gain insight into their effect on the structural mechanics of the leaflets at all length-scales, down to the cell scale.


2021 ◽  
Author(s):  
Tomos Potter ◽  
Anja Felmy

AbstractIn wild populations, large individuals have disproportionately higher reproductive output than smaller individuals. We suggest an ecological explanation for this observation: asymmetry within populations in rates of resource assimilation, where greater assimilation causes both increased reproduction and body size. We assessed how the relationship between size and reproduction differs between wild and lab-reared Trinidadian guppies. We show that (i) reproduction increased disproportionately with body size in the wild but not in the lab, where effects of resource competition were eliminated; (ii) in the wild, the scaling exponent was greatest during the wet season, when resource competition is strongest; and (iii) detection of hyperallometric scaling of reproduction is inevitable if individual differences in assimilation are ignored. We propose that variation among individuals in assimilation – caused by size-dependent resource competition, niche expansion, and chance – can explain patterns of hyperallometric scaling of reproduction in natural populations.


2019 ◽  
Author(s):  
Maja Boczkowska ◽  
Katarzyna Bączek ◽  
Olga Kosakowska ◽  
Anna Rucińska ◽  
Wiesław Podyma ◽  
...  

Abstract Background: Valeriana officinalis L. is one of the most important medicinal plant with a mild sedative, nervine, antispasmodic and relaxant effect. Despite a substantial number of studies on this species, population genomics has not yet been analyzed. The main aim of this study was: characterization of genetic variation of natural populations of V. officinalis in Poland and comparison of variation of wild populations and the cultivated form using Next Generation Sequencing based DArTseq technique. We also would like to establish foundations for genetic monitoring of the species in the future and to develop genetic fingerprint profile for samples deposited in gene bank and in natural sites in order to assess the degree of their genetic integrity and population structure preservation in the future.Results: The major and also the most astounding result of our work is the low level of observed heterozygosity of individual plants from natural populations despite the fact that the species is widespread in the studied area. Inbreeding, in naturally outcrossing species such as valerian, decreases the reproductive success. The analysis of the population structure indicated the potential presence of metapopulation in a broad area of Poland and the formation of a distinct gene pool in Bieszczady Mountains. The results also indicate the presence of individuals of the cultivated form in natural populations in the region where the species is cultivated for the needs of the pharmaceutical industry and this could lead to structural and genetic imbalance in wild populations.Conclusions: The DArTseq technology can be applied effectively in genetic studies of V. officinalis. The genetic variability of wild populations is in fact significantly lower than assumed. Individuals from the cultivated population are found in the natural environment and their impact on wild populations should be monitored.


2019 ◽  
Author(s):  
Melanie J. Heckwolf ◽  
Britta S. Meyer ◽  
Robert Häsler ◽  
Marc P. Höppner ◽  
Christophe Eizaguirre ◽  
...  

AbstractWhile environmentally inducible epigenetic marks are discussed as one mechanism of transgenerational plasticity, environmentally stable epigenetic marks emerge randomly. When resulting in variable phenotypes, stable marks can be targets of natural selection analogous to DNA sequence-based adaptation processes. We studied both postulated pathways in natural populations of three-spined sticklebacks (Gasterosteus aculeatus) and sequenced their methylomes and genomes across a salinity cline. Consistent with local adaptation, populations showed differential methylation (pop-DMS) at genes enriched for osmoregulatory processes. In a two-generation experiment, 62% of these pop-DMS were insensitive to salinity manipulation, suggesting that they could be stable targets for natural selection. Two-thirds of the remaining inducible pop-DMS became more similar to patterns detected in wild populations from the corresponding salinity, and this pattern accentuated over consecutive generations, indicating a mechanism of adaptive transgenerational plasticity. Natural DNA methylation patterns can thus be attributed to two epigenetic pathways underlying the rapid emergence of adaptive phenotypes in the face of environmental change.


Author(s):  
Herman Njoroge Chege

Point 1: Deep learning algorithms are revolutionizing how hypothesis generation, pattern recognition, and prediction occurs in the sciences. In the life sciences, particularly biology and its subfields,  the use of deep learning is slowly but steadily increasing. However, prototyping or development of tools for practical applications remains in the domain of experienced coders. Furthermore, many tools can be quite costly and difficult to put together without expertise in Artificial intelligence (AI) computing. Point 2: We built a biological species classifier that leverages existing open-source tools and libraries. We designed the corresponding tutorial for users with basic skills in python and a small, but well-curated image dataset. We included annotated code in form of a Jupyter Notebook that can be adapted to any image dataset, ranging from satellite images, animals to bacteria. The prototype developer is publicly available and can be adapted for citizen science as well as other applications not envisioned in this paper. Point 3: We illustrate our approach with a case study of 219 images of 3 three seastar species. We show that with minimal parameter tuning of the AI pipeline we can create a classifier with superior accuracy. We include additional approaches to understand the misclassified images and to curate the dataset to increase accuracy. Point 4: The power of AI approaches is becoming increasingly accessible. We can now readily build and prototype species classifiers that can have a great impact on research that requires species identification and other types of image analysis. Such tools have implications for citizen science, biodiversity monitoring, and a wide range of ecological applications.


2009 ◽  
Vol 5 (6) ◽  
pp. 784-787 ◽  
Author(s):  
Camille Bonneaud ◽  
Janet S. Sinsheimer ◽  
Murielle Richard ◽  
Olivier Chastel ◽  
Gabriele Sorci

Genetic estimates of the variability of immune responses are rarely examined in natural populations because of confounding environmental effects. As a result, and because of the difficulty of pinpointing the genetic determinants of immunity, no study has to our knowledge examined the contribution of specific genes to the heritability of an immune response in wild populations. We cross-fostered nestling house sparrows to disrupt the association between genetic and environmental effects and determine the heritability of the response to a classic immunological test, the phytohaemagglutinin (PHA)-induced skin swelling. We detected significant heritability estimates of the response to PHA, of body mass and tarsus length when nestlings were 5 and 10 days old. Variation at Mhc genes, however, did not explain a significant portion of the genetic variation of nestling swelling to PHA. Our results suggest that while PHA-induced swelling is influenced by the nest of origin, the importance of additive genetic variation relative to non-additive genetic variation and the genetic factors that influence the former in wild populations still need to be identified for this trait.


1996 ◽  
Vol 82 (3_suppl) ◽  
pp. 1371-1376 ◽  
Author(s):  
Kimihiko Yamagishi

Frequency estimation of social facts was compared between two methods of response elicitation. In the “narrow range” method, respondents answered questions like: “Out of 100 instances, how many instances belong to category X?”. In the “wide range” method, the same question was asked regarding “Out of 10,000.” A previous study in 1994 showed that judged frequencies were proportionally greater in the narrow condition than in the wide condition when subjects estimated the occurrence of low-frequency events. These results were interpreted to reflect cognitive processes of anchoring, wherein judged frequencies he close to small numbers within particular response ranges. The current work extends this argument to high-frequency events. In such cases, judgments about high-frequency events would be reached by similar cognitive processes operating toward the opposite direction. Hence, I predicted that judged frequencies for high-frequency events would be proportionally greater in the wide than in the narrow condition. Results were mostly consistent with these predictions. The relation to previous research is discussed.


Sign in / Sign up

Export Citation Format

Share Document