scholarly journals Development of an arteriolar niche and self-renewal of breast cancer stem cells by lysophosphatidic acid/protein kinase D signaling

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Yinan Jiang ◽  
Yichen Guo ◽  
Jinjin Hao ◽  
Rachael Guenter ◽  
Justin Lathia ◽  
...  

AbstractBreast cancer stem cells (BCSCs) are essential for cancer growth, metastasis and recurrence. The regulatory mechanisms of BCSC interactions with the vascular niche within the tumor microenvironment (TME) and their self-renewal are currently under extensive investigation. We have demonstrated the existence of an arteriolar niche in the TME of human BC tissues. Intriguingly, BCSCs tend to be enriched within the arteriolar niche in human estrogen receptor positive (ER+) BC and bi-directionally interact with arteriolar endothelial cells (ECs). Mechanistically, this interaction is driven by the lysophosphatidic acid (LPA)/protein kinase D (PKD-1) signaling pathway, which promotes both arteriolar differentiation of ECs and self-renewal of CSCs likely via differential regulation of CD36 transcription. This study indicates that CSCs may enjoy blood perfusion to maintain their stemness features. Targeting the LPA/PKD-1 -CD36 signaling pathway may have therapeutic potential to curb tumor progression by disrupting the arteriolar niche and effectively eliminating CSCs.

2021 ◽  
Author(s):  
Yinan Jiang ◽  
Yichen Guo ◽  
Jinjin Hao ◽  
Rachael Guenter ◽  
Justin Lathia ◽  
...  

Abstract Breast cancer stem cells (BCSCs) are essential for cancer growth, metastasis and recurrence. The regulatory mechanisms of BCSC interactions with the vascular niche within the tumor microenvironment (TME) and their self-renewal are currently under extensive investigation. We have demonstrated the existence of an arteriolar niche in the TME of human BC tissues. Intriguingly, BCSCs tend to be enriched within arteriolar niche in human estrogen receptor positive (ER+) BC and bi-directionally interact with arteriolar endothelial cells (ECs). Mechanistically, this interaction is driven by the lysophosphatidic acid (LPA)/protein kinase D (PKD-1) signaling pathway, which promotes both arteriolar differentiation of ECs and self-renewal of CSCs. This study indicates that CSCs may enjoy blood perfusion to maintain their stemness features. Targeting the LPA/PKD-1 signaling pathway in combination with inhibition of CD36 function may have therapeutic potential to curb tumor progression by disrupting the arteriolar niche and eliminating CSCs.


Cancers ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 54
Author(s):  
Margaret L. Dahn ◽  
Paola Marcato

Cancer stem cells (CSCs) are functionally defined in our laboratories by their impressive tumor-generating and self-renewal capacity; clinically, CSCs are of interest because of their enhanced capacity to evade conventional therapies [...]


2016 ◽  
Vol 23 (4) ◽  
pp. 83-89 ◽  
Author(s):  
X Sun ◽  
C Xu ◽  
S-C Tang ◽  
J Wang ◽  
H Wang ◽  
...  

Life Sciences ◽  
2018 ◽  
Vol 196 ◽  
pp. 56-62 ◽  
Author(s):  
Xiuli Li ◽  
Na Zhou ◽  
Jin Wang ◽  
Zhijie Liu ◽  
Xiaohui Wang ◽  
...  

2013 ◽  
Vol 29 (5) ◽  
pp. 2079-2087 ◽  
Author(s):  
XIN SUN ◽  
SIDA QIN ◽  
CHONG FAN ◽  
CHONGWEN XU ◽  
NING DU ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document