scholarly journals A xanthene derivative, DS20060511, attenuates glucose intolerance by inducing skeletal muscle-specific GLUT4 translocation in mice

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Shinji Furuzono ◽  
Tetsuya Kubota ◽  
Junki Taura ◽  
Masahiro Konishi ◽  
Asuka Naito ◽  
...  

AbstractReduced glucose uptake into the skeletal muscle is an important pathophysiological abnormality in type 2 diabetes, and is caused by impaired translocation of glucose transporter 4 (GLUT4) to the skeletal muscle cell surface. Here, we show a xanthene derivative, DS20060511, induces GLUT4 translocation to the skeletal muscle cell surface, thereby stimulating glucose uptake into the tissue. DS20060511 induced GLUT4 translocation and stimulated glucose uptake into differentiated L6-myotubes and into the skeletal muscles in mice. These effects were completely abolished in GLUT4 knockout mice. Induction of GLUT4 translocation by DS20060511 was independent of the insulin signaling pathways including IRS1-Akt-AS160 phosphorylation and IRS1-Rac1-actin polymerization, eNOS pathway, and AMPK pathway. Acute and chronic DS20060511 treatment attenuated the glucose intolerance in obese diabetic mice. Taken together, DS20060511 acts as a skeletal muscle-specific GLUT4 translocation enhancer to facilitate glucose uptake. Further studies of DS20060511 may pave the way for the development of novel antidiabetic medicines.

2020 ◽  
Author(s):  
Shinji Furuzono ◽  
Tetsuya Kubota ◽  
Junki Taura ◽  
Masahiro Konishi ◽  
Asuka Naito ◽  
...  

Abstract Reduced glucose uptake into the skeletal muscle is an important pathophysiological abnormality in type 2 diabetes, and is caused by impaired translocation of glucose transporter 4 (GLUT4) to the skeletal muscle cell surface. We found a novel xanthene compound, DS20060511, which induces GLUT4 translocation to the skeletal muscle cell surface, thereby stimulating glucose uptake into the skeletal muscle. DS20060511 induced GLUT4 translocation and glucose uptake into differentiated L6-miytubes and into the skeletal muscles of live mice. These effects were completely abolished in GLUT4 knockout mice. Induction of GLUT4 surface translocation by DS20060511 was independent of the insulin signaling pathways including IRS1-Akt-AS160 phosphorylation and IRS1-Rac1-actin polymerization, eNOS pathway and AMPK pathway. Acute and chronic DS20060511 treatment attenuated the glucose intolerance in obese diabetic mice. Taken together, DS20060511 acts as a skeletal muscle specific-GLUT4 translocation enhancer to facilitate glucose utilization. Further studies with DS20060511 would help to develop a novel antidiabetic medicine.


2018 ◽  
Vol 19 (5) ◽  
pp. 1321 ◽  
Author(s):  
Filip Vlavcheski ◽  
David Baron ◽  
Ioannis Vlachogiannis ◽  
Rebecca MacPherson ◽  
Evangelia Tsiani

2017 ◽  
Vol 121 (suppl_1) ◽  
Author(s):  
Ji Li ◽  
Yina Ma ◽  
Jonathan Bogan

Introduction: The adaptive metabolic regulation of glucose and fatty acid in the heart plays a critical role in limiting cardiac damage caused by ischemia and reperfusion (I/R). TUG (tether containing a UBX domain, for GLUT4) can be cleaved to mobilize glucose transporter GLUT4 from intracellular vesicles to the cell surface in skeletal muscle and adipose in response to insulin stimulation. The energy sensor AMP-activated protein kinase (AMPK) plays an important cardioprotective role in response to ischemic insults by modulating GLUT4 translocation. Hypothesis: TUG is one of the downstream targets of AMPK in the heart. TUG could be phosphorylated by ischemic AMPK and cleaved to dissociate with GLUT4 and increase GLUT4 translocation in the ischemic heart. Methods: In vivo regional ischemia by ligation of left anterior coronary artery and ex vivo isolated mouse heart perfusion Langendorff system were used to test the hypothesis. Results: Antithrombin (AT) is an endogenous AMPK agonist in the heart and used to define the role of TUG in regulating GLUT4 trafficking during ischemia and reperfusion in the heart. AT showed its cardioprotective function through recovering cardiac pumping function and activating AMPK. The results showed that AMPK activation by AT treatment was through LKB1 and Sesn2 complex. Furthermore, the ex vivo heart perfusion data demonstrated that AT administration significantly increase GLUT4 translocation, glucose uptake, glycolysis and glucose oxidation during ischemia and reperfusion (p<0.05 vs . vehicle). Moreover, AT treatment increased abundance of a TUG cleavage product (42 KD) in response to I/R. The TUG protein was clearly phosphorylated by activated AMPK in HL-1 cardiomyocytes. The in vivo myocardial ischemia results demonstrated that ischemic AMPK activation triggers TUG cleavage and significantly increases GLUT4 translocation to the cell surface. Moreover, an augmented interaction between AMPK and TUG was observed during ischemia. Conclusions: Cardiac AMPK activation stimulates TUG cleavage and causes the dissociation between TUG and GLUT4 in the intracellular vesicles. TUG is a critical mediator that modulates cardiac GLUT4 translocation to cell surface and enhances glucose uptake by AMPK signaling pathway.


1998 ◽  
Vol 337 (1) ◽  
pp. 51-57 ◽  
Author(s):  
Garret J. ETGEN ◽  
William J. ZAVADOSKI ◽  
Geoffrey D. HOLMAN ◽  
E. Michael GIBBS

Skeletal muscle glucose transport was examined in transgenic mice overexpressing the glucose transporter GLUT1 using both the isolated incubated-muscle preparation and the hind-limb perfusion technique. In the absence of insulin, 2-deoxy-d-glucose uptake was increased ∼ 3–8-fold in isolated fast-twitch muscles of GLUT1 transgenic mice compared with non-transgenic siblings. Similarly, basal glucose transport activity was increased ∼ 4–14-fold in perfused fast-twitch muscles of transgenic mice. In non-transgenic mice insulin accelerated glucose transport activity ∼ 2–3-fold in isolated muscles and to a much greater extent (∼ 7–20-fold) in perfused hind-limb preparations. The observed effect of insulin on glucose transport in transgenic muscle was similarly dependent upon the technique used for measurement, as insulin had no effect on isolated fast-twitch muscle from transgenic mice, but significantly enhanced glucose transport in perfused fast-twitch muscle from transgenic mice to ∼ 50–75% of the magnitude of the increase observed in non-transgenic mice. Cell-surface glucose transporter content was assessed via 2-N-4-(l-azi-2,2,2-trifluoroethyl)benzoyl-1,3-bis-(d -mannos-4-yloxy)-2-propylamine photolabelling methodology in both isolated and perfused extensor digitorum longus (EDL). Cell-surface GLUT1 was enhanced by as much as 70-fold in both isolated and perfused EDL of transgenic mice. Insulin did not alter cell-surface GLUT1 in either transgenic or non-transgenic mice. Basal levels of cell-surface GLUT4, measured in either isolated or perfused EDL, were similar in transgenic and non-transgenic mice. Interestingly, insulin enhanced cell-surface GLUT4 ∼ 2-fold in isolated EDL and ∼ 6-fold in perfused EDL of both transgenic and non-transgenic mice. In summary, these results reveal differences between isolated muscle and perfused hind-limb techniques, with the latter method showing a more robust responsiveness to insulin. Furthermore, the results demonstrate that muscle overexpressing GLUT1 has normal insulin-induced GLUT4 translocation and the ability to augment glucose-transport activity above the elevated basal rates.


2019 ◽  
Vol 20 (21) ◽  
pp. 5443 ◽  
Author(s):  
Takenaka ◽  
Nakao ◽  
Matsui ◽  
Satoh

Insulin-stimulated glucose uptake is mediated by translocation of the glucose transporter GLUT4 to the plasma membrane in adipocytes and skeletal muscle cells. In both types of cells, phosphoinositide 3-kinase and the protein kinase Akt2 have been implicated as critical regulators. In skeletal muscle, the small GTPase Rac1 plays an important role downstream of Akt2 in the regulation of insulin-stimulated glucose uptake. However, the role for Rac1 in adipocytes remains controversial. Here, we show that Rac1 is required for insulin-dependent GLUT4 translocation also in adipocytes. A Rac1-specific inhibitor almost completely suppressed GLUT4 translocation induced by insulin or a constitutively activated mutant of phosphoinositide 3-kinase or Akt2. Constitutively activated Rac1 also enhanced GLUT4 translocation. Insulin-induced, but not constitutively activated Rac1-induced, GLUT4 translocation was abrogated by inhibition of phosphoinositide 3-kinase or Akt2. On the other hand, constitutively activated Akt2 caused Rac1 activation, and insulin-induced Rac1 activation was suppressed by an Akt2-specific inhibitor. Moreover, GLUT4 translocation induced by a constitutively activated mutant of Akt2 or Rac1 was diminished by knockdown of another small GTPase RalA. RalA was activated by a constitutively activated mutant of Akt2 or Rac1, and insulin-induced RalA activation was suppressed by an Akt2- or Rac1-specific inhibitor. Collectively, these results suggest that Rac1 plays an important role in the regulation of insulin-dependent GLUT4 translocation downstream of Akt2, leading to RalA activation in adipocytes.


2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
João Victor Esteves ◽  
Francisco Javier Enguita ◽  
Ubiratan Fabres Machado

The solute carrier family 2 facilitated glucose transporter member 4 (GLUT4) plays a key role in the insulin-induced glucose uptake by muscle and adipose tissues. In prediabetes and diabetes, GLUT4 expression/translocation has been detected as reduced, participating in mechanisms that impair glycemic control. Recently, a class of short endogenous noncoding RNAs named microRNAs (miRNAs) has been increasingly described as involved in the posttranscriptional epigenetic regulation of gene expression. The present review focuses on miRNAs potentially involved in the expression of GLUT4 expression, and proteins related to GLUT4 and translocation in skeletal muscle, seeking to correlate them with insulin resistance and diabetes. So far, miR-21a-5p, miR-29a-3p, miR-29c-3p, miR-93-5p, miR-106b-5p, miR-133a-3p, miR-133b-3p, miR-222-3p, and miR-223-3p have been reported to directly and/or indirectly regulate the GLUT4 expression; and their expression is altered under diabetes-related conditions. Besides, some miRNAs that have been linked to the expression of proteins involved in GLUT4 translocation machinery in muscle could also impact glucose uptake. That makes these miRNAs promising targets for preventive and/or therapeutic approaches, which could improve glycemic control, thus deserving future new investigations.


2019 ◽  
Vol 317 (6) ◽  
pp. E957-E972
Author(s):  
Brent A. Fujimoto ◽  
Madison Young ◽  
Lamar Carter ◽  
Alina P. S. Pang ◽  
Michael J. Corley ◽  
...  

Skeletal muscle handles ~80–90% of the insulin-induced glucose uptake. In skeletal muscle, insulin binding to its cell surface receptor triggers redistribution of intracellular glucose transporter GLUT4 protein to the cell surface, enabling facilitated glucose uptake. In adipocytes, the eight-protein exocyst complex is an indispensable constituent in insulin-induced glucose uptake, as it is responsible for the targeted trafficking and plasma membrane-delivery of GLUT4. However, the role of the exocyst in skeletal muscle glucose uptake has never been investigated. Here we demonstrate that the exocyst is a necessary factor in insulin-induced glucose uptake in skeletal muscle cells as well. The exocyst complex colocalizes with GLUT4 storage vesicles in L6-GLUT4myc myoblasts at a basal state and associates with these vesicles during their translocation to the plasma membrane after insulin signaling. Moreover, we show that the exocyst inhibitor endosidin-2 and a heterozygous knockout of Exoc5 in skeletal myoblast cells both lead to impaired GLUT4 trafficking to the plasma membrane and hinder glucose uptake in response to an insulin stimulus. Our research is the first to establish that the exocyst complex regulates insulin-induced GLUT4 exocytosis and glucose metabolism in muscle cells. A deeper knowledge of the role of the exocyst complex in skeletal muscle tissue may help our understanding of insulin resistance in type 2 diabetes.


Sign in / Sign up

Export Citation Format

Share Document